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1.0 Learning Objectives 

The general purpose of this chapter is to provide an understanding of basic aspects of differential 

equations. A geometrical approach is used to prove the existence of solution of an initial value problem. 

1.1 Introduction 

We live in a world of interrelated changing entities. The position of earth changes with time, the 

velocity of a falling body changes with distance, the path of a projectile changes with the velocity and 

angle at which it is fired.  
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In the language of mathematics, changing entities are called variables and the rate of change of 

one variable with respect to another a derivative. Equation which expresses a relationship among these 

variables and their derivatives are called differential equations. For example, from certain facts about the 

variable position of a particle and its rate of change with respect to time, we want to determine how the 

position of particle is related to the time, so that we can know where the particle was, is, or will be at any 

time t. Differential equations thus originate, whenever a universal law is expressed by means of variables 

and their derivatives. 

 

1.2 Preliminaries 

 In the real (x,y) plane, we denote x for independent variable and y for dependent variable. Then y 

will be a function of x and its value at x  [a, b] will be considered as y(x). Similarly in the real (t, x) or 

(t, y) plane, t will be treated as independent variable and x or y as dependent variables. We shall consider 

any such plane and the real or complex valued functions defined on any domain D in such plane, where 

by a domain we understand an open connected set.  

1.2.1 Relation of Differential Equations to various fields 

 Differential equations arise in many areas of science and technology: where a deterministic 

relationship involving some continuously changing quantities (modeled by functions) and their rates of 

change (expressed as derivatives) is known or postulated. Newton’s Laws allow one to relate the 

position, velocity, acceleration and various forces acting on the body and state this relation as a 

differential equation for the unknown position of the body as a function of time.  

 The study of differential equations is a wide field in pure and applied mathematics, physics and 

engineering. All of these disciplines are concerned with the properties of differential equations of various 

types. Pure mathematics focuses on the existence and uniqueness of solutions, while applied 

mathematics emphasizes the rigorous justification of the methods for approximating solutions. 

Differential equations play an important role in modeling virtually every physical, technical, or 

biological process, from celestial motion to bridge design, to interactions between neurons. Many 
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famous mathematicians have studied differential equations and contributed to the field, including 

Newton, Leibniz, the Bernoulli family, Riccati, Clairaut, d’ Alembert and Euler. 

1.2.2 Differential Equation 

An equation involving derivatives of one or more dependent variables with respect to one or more 

independent variables is called a differential equation. This relation between dependent variable (and its 

derivatives) and independent variables is non trivial i.e. some equations that appear to satisfy above 

definition are really identities. For example,    

 

2 2

2dy dy dy
y 2

dt dt dt
y y

   
      

   
 (1) 

 2 2dy dy
sin     cos     1

dt dt

   
    

   
 (2) 

This equation (2) is satisfied by every differential function of one variable.  

 So, non trivial manner means we do not include these types of equations in the class of 

differential equations. We exclude such expressions as  

   ax axd
(e ) = ae

dx
,  

  
d dv du

(uu) u v
dx dx dx

    

and so forth.  

1.2.3 Physical Meaning  

 If y = f(x) is a given function then 
dy

dx
 is interpreted as rate of change of y w.r.t. x. In any natural 

process the variables involved and their rates of change are connected with one another by means of the 

basic scientific principles (that govern the process). When this connection is expressed in mathematical 

symbols, the result is often a differential equation. For example, according to Newton’s second law of 

motion, acceleration of a body of mass m is proportional to the total force F acting on it 

 i.e.  a  F 
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or  a  = 
1

m
 F with 

1

m
  as constant of proportionality.  

   F = ma    (1) 

 For instance, let a body of mass m falls freely under the influence of gravity alone. In this case 

only force acting on it is mg, where g is acceleration due to gravity. In most applications g is equal to 32 

feet per second (or 980 centimeters per second per second).  

 If y is distance down to the body from some fixed height, than its velocity 
dy

v = 
dt

 is rate of 

change of position and acceleration a =  
2

2

d y

dt
 is rate of change of velocity. With this notation, (1) 

becomes  

   
2

2

d y
m mg

dt
  

or   
2

2

d y
g

dt
  (2) 

 If we alter the situation by assuming that air exerts a resisting force proportional to the velocity, 

then total force acting on the body is mg - k
dy

dt

 
 
 

 and (1) becomes  

  
2

2

d y dy
m g - k

dt dt
m . (3)  

 Equation (2) and (3) are differential equations that express the physical processes under 

consideration.  

General Form  

 A differential equation having y as the dependent variable (unknown function) and t as the 

independent variable has the form  

 F[t, y,   
dy

dt
,   

2

2

d y

dt
, …., 

n

n

d y

dt
] = 0 for some positive integer n. if n = 0, the equation is algebraic 

or transcendental equation rather than a differential equation.  
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1.3 Classification of Differential Equations 

1.3.1 Ordinary Differential Equation  

 A differential equation involving ordinary derivatives (total derivative
d

dt
) of one as more 

dependent variables w.r.t. a single independent variable is called an ordinary differential equation, e.g.  

  

22

2

d y dy
y  0

dx dx
x

 
  

 
 and  (1.1) 

    
4 2

4 2

d x d x
5  3x sin t

dt dt
    (1.2) 

are ordinary differential equations. In (1.1) the variable x is the single independent variable and y is a 

dependent variable. In (1.2), the independent variable is t, whereas x is dependent variable.  

Some general examples of ordinary differential equations: 

Legendre’s equation 

  
2

2

2

d y dy
(1 ) 2 ( 1) 0

dx dx
x x p p y      (1.3) 

Bessel’s equation 

  
2

2 2 2

2

d y dy
( ) 0

dx dx
x x x p y     (1.4) 

are 2
nd

 order O.D. equations. 

1.3.2 Partial Differential Equation  

 A differential equation involving partial derivatives 
t

 
 
 

 of one or more dependent variables 

w.r.t. more than one independent variables is called a Partial Differential Equation. e.g.  

  
u u

u
s t

 
 

 
  (2.1) 

 In (2.1), s and t are independent variables and u is dependent variable.  
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 Also, If  u = f(x, y, z, t) is a function of time and three rectangular coordinates of a point in space, 

then following are partial differential equations of 2
nd

 order.  

 Laplace equation  

  
2 2 2

2 2 2
0

u u u

x y z

  
  

  
 (2.2) 

  

 

 Heat equation  

  
2 2 2

2

2 2 2

u u u u
a

x y z t

    
   

    
 (2.3) 

 Wave   equation  

  
2 2 2 2

2

2 2 2 2

u u u u
a

x y z t

    
   

    
 (2.4) 

 Generally partial differential equations arise in the physics of continuous media in problems 

involving electric fields, fluid dynamics, diffusion and wave motion. 

1.3.3 Order of a Differential Equation  

 The order of a differential equation is the order of the highest derivative present in the differential 

equation. Equations (1.1) and (2.2) are of 2
nd

 order, (1.2) is of fourth order and (2.1) is of first order. 

1.3.4 Linear Ordinary Differential Equation  

 A differential equation is said to be linear if it is linear in y and all its derivatives. i.e. a linear 

differential equation of order n, in the dependent variable y and the independent variable x is an equation 

that can be expressed in the form  

 
n n-1

0 1 1n n-1

d y d y dy
( ) ( ) ..... ( ) ( ) ( )

dx dx dx
n na x a x a x a x y b x     , (A) 

where a0 is not identically equal to zero.   
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Thus we observe here that  

(1) The dependent variable y and its various derivatives occur to the first degree only.  

(2) No products of y and/or any of its derivatives are present. 

(3) No transcendental (i.e. vague) function of y and/or its derivatives occur. 

Examples: (i)  
2

2

d y dy
7 6 0

dt dt
y    (equation with constant coefficients)  

  (ii) t
7
 

2

2

d y dy
6 sin

dt dt
y t    (equation with variable coefficients) 

  (iii)  
4 3

2 3

4 3

d y d y dy

dx dx dx

xx x xe    (equation with variable coefficients) 

 Here y and its derivatives occur to the first degree only and no product of y and/or any of its 

derivatives are present.  

1.3.5 Non Linear Differential Equation  

 Equation F(x, y, y
1
, ….. y

(n)
,) (where F is a known function) is called a non linear differential 

equation of order n, if it cannot be written in the linear form as in (A)  

  

32

2

d y dy
+5 +6y=0

dx dx

 
 
 

 (1) 

   
2

2

d y dy
5 6 0

dx dx
y y    (2) 

 Equation (1) is non-linear due to presence of the term 5(dy/dx)
3
, which involves third power of 

first derivative. 

 Equation (2) is non-linear because of the term 5y(dy/dx), which involves the product of 

dependent variable and its first derivative.     

1.3.6 Application of Differential Equations 
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 Differential equations occur in numerous problems that are encountered in various branches of 

science and engineering. A few such problems are:  

(1) The problem of determining the motion of a projectile, rocket, satellite or planet.  

(2) The problem of determining the charge or current in an electric circuit.  

(3) The problem of the conduction of heat in a rod or in a slab.  

(4) The problem of determining the vibrations of a wire or a membrane. 

(5) The study of the rate of growth of a population.  

(6) The problem of the determination of curves that have certain geometrical properties. 

 

1.3.7 Solutions 

 A functional relation between the dependent variable y and the independent variable x, that, in 

some interval J, satisfies the given differential equation i.e. reduces it to an identity in x  is said to be a 

solution of the equation. The general solution of an nth order differential equation depends on x and on 

the n arbitrary real constants c1, c1, c2, …… cn. e.g. the function y(x) = x
2
 + ce

x
 is the general solution of 

the differential equation. 
 
 

  
y' = y – x

2
 + 2x  in  J = R  

 Also  y(x) = x
3
 + 

3

c

x
 is a general solution of  

  xy' + 3y = 6x
3   

(B)
 

 and the function y(x) = x
3
 is a particular solution of the equation (B), obtained by taking the 

particular value c = 0 in the general solution of (B). 

1.3.8 Singular Solution  

 The solution which cannot be obtained by assigning particular values to the constants in general 

solution is called a singular solution.  
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 For example in differential equation y'
2
 - xy' + y = 0, the general solution is y(x)= cx - x

2
, which 

represents a family of straight lines and y(x) = 21

4
x  is a singular solution which represents a parabola. 

Thus in ‘General Solution’ the word ‘general’ must not be taken in the sense of complete. A totality of 

all solutions of a differential equation is called a complete solution.  

1.3.9 Explicit Solution  

 A differential equation of first order may be written as  

   F(x, y, y') = 0.  

 The function y = (x) is called an explicit solution of this differential equation provided F(x, (x), 

'(x)) = 0 in I. 

 A relation of the  form (x,y) = 0 is said to be an implicit solution of             F(x, y, y') = 0 

provided it determines one or more function y = (x) which satisfy         F(x, (x), '(x)) = 0. It is 

frequently difficult (if not impossible) to solve (x, y) = 0 for y. So, we can test the solution by obtaining 

y' by implicit differentiation x  = yy' = 0 or y' = - x/y and check if F(x, y, - x/y)  0 

 Thus a relation (x,y) = 0 is called an implicit solution of given differential equation, if this 

relation defines at least one real function of the variable x on an interval I such that this function is an 

explicit solution of given differential equation on this interval.  

 Thus y = g(x) is a solution of differential equation F[x, y, y, ….. y
(n)

] =0 on an interval I means 

that  

  F[x, g(x), g'(x), ………..,  g
(n)

(x)] = 0, 

for every choice of x in the interval I. In other words, a solution, when substituted into the differential 

equation makes the equation identically true for t in I.  

1.4 Some Definitions from Real Function Theory 

Definition A A sequence {cn} of real numbers is said to converge to limit c if, given any      > 0, there 

exists a positive number N such that  
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   cn - c<   

for all n > N. We indicate this by writing 
n
lim


 cn = c. 

Definition B Let {fn} be a sequence of real functions, each of which is defined on the real interval a x 

b. The sequence {fn} is said to converge pointwise to f an a  x  b, if, given any  > 0, for each x such 

that a  x  b there exists a positive number N (in general depending both on  and on x) such that 

     fn(x) - f (x)<  

 for every n > N.  

Definition C Let {fn} be a sequence of real functions, each of which is defined on the real interval a x 

b. The sequence {fn} is said to converge uniformly to f on a  x  b, if, given any  > 0, there exists a 

positive number N (which depends only upon ) such that 

     fn(x) - f (x)<  

for all n > N for every x such that a x b 

 Geometrically, this means that give  > 0, the graphs of y = fn(x) for all n >N lie between the 

graphs of y = f(x) +  and y = f(x) -  for a x b (see figure).  

 

 

 

 

 

 

 

 

Figure  
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 Statement of two important theorems to be used in existence and uniqueness theorem are as 

follows: 

Theorem - A 

Hypothesis  

1. Let {fn} be a sequence of real functions which converges uniformly to f on the interval a x b.  

2. Suppose each function fn(n=1, 2, 3, ….. ) is continuous on a x b.  

Conclusion The limit function f is continuous on a x b.  

Theorem - B 

Hypothesis  

1. Let {fn} be a sequence of real functions which converges uniformly to f on the interval a x b.  

2. Suppose each function fn(n=1, 2, 3, ….. ) is continuous on a x b.  

Conclusion Then for every  and  such that a  <   b. 

  
n n
lim ( ) lim ( ) n nf x dx f x dx

 

  
   . 

Definition  D 

 Consider the infinite series 
1

n

n

u




 of real functions un (n = 1, 2, 3, …..) each of which is defined 

on a real interval a x b. Consider the sequence {fn} of partial sums of this series, defined as follows: 

  f1  = u1,  

  f2  = u1 + u2  

  f3  = u1 + u2 + u3,  

  fn = u1 + u2 + u3 + . .. . + un  
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 The infinite series 
n

n 1

u  




 is said to converge uniformly to f on a  x b if its sequence of partial 

sums {fn} converges uniformly to f on a x b. 

Weierstrass M – Test 

Hypothesis   

1. Let {Mn} be a sequence of positive constants such that the series of constants 
n

n 1

M




  converges.  

2. Let 
n

n 1

u  




 be a series of real functions such that un(x)  Mn for all x such that a x b and for 

each n = 1, 2, 3, ...... 

Conclusion 

 The series 
n

n 1

u  




 converges uniformly on a x b.     

Functions of two real variables  

Definition E 

1. A set of points A of the xy plane will be called connected if any two points of A can be joined by 

a continuous curve which lies entirely in A.  

2. A set of points A of the xy plane is called open if each point of A is the center of a circle whose 

interior lies entirely in A.  

3. An open, connected set in the xy plane is called a domain.  

4. A point P is called a boundary point of a domain D if every circle about P contains both points in 

D and points not in D.  

5. A domain plus its boundary points will be called a closed domain.  

Definition F 
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 Let f be real function defined on a domain D of the xy plane, and let (x0, y0) be an interior point 

of D. The function f is said to be continuous at (x0, y0) if, given any   > 0, there exists a  > 0 such that  

   f(x, y) – f(x0, y0)<  

 for all (x,y)  D such that 

   x - x0<  and  y - y0< . 

Definition G Let f be a real function defined on D, where D is either a domain or a closed domain of the 

xy plane. The function f is said to be bounded on D if there exists a positive number M such that f(x, 

y)  M for all (x, y) in D.  

Theorem C 

Hypothesis 

 Let f be defined and continuous on a closed rectangle R: a  x b, c  y  d.  

Conclusion Then the function f is bounded on R.  

 

Definition H 

 Let f be defined on D, where D is either a domain or a closed domain of the xy plane. The 

function f is said to satisfy a Lipschitz condition (with respect to y) in D if there exists a constant k> 0 

such that  

    f(x, y1) - f(x, y2) ky1 - y2 

for every (x, y1) and (x, y2) which belong to D. The constant k is called the Lipschitz constant.  

1.5 Initial Value Problem 

We now formulate the basic problem:  

 Let D be a domain in the xy plane and let (x0, y0) be an interior point of D. Consider the 

differential equation 
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dy

f(x,y),
dx

  (1) 

where f is a continuous real function defined on D. We want to determine:  

1. an interval  x   of the real x-axis such that  < x0 < , and  

2. a differentiable real function  defined on this interval [,] and satisfying the following three 

requirements. 

(i) [x, (x)]  D, and thus f[x, (x)] is defined, for all x  [,]. 

(ii) 
( )

[ , ( )],
d x

f x x
dx


  and thus  satisfies the differential equation (1), for all       x  [,]. 

(iii) (x0) = y0  

 This problem is called the initial-value problem associated with the differential equation (1) and 

the point (x0, y0). We shall denote it by 

  
dy

f(x,y),
dx

  

  y(x0) = y0  (2) 

and a function  satisfying the above requirements on an interval [,] is called a solution of the problem 

on the interval [,].  

 If  is a solution of the problem on [,], then requirement (ii) shows that  has a continuous first 

derivative ' on [,] 

1.5.1 Basic Lemma 

Hypothesis 

1. Let f be a continuous function defined on a domain D of the xy plane.  

2. Let  be a continuous function defined on a real interval  x   and such that [x, (x)]  D for 

all x  [, ]. 
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3. Let x0 be any real number such that   < x0 < . 

Conclusion 

 Then   is a solution of the differential equation  

   
dy

f(x, y)
dx

    (1) 

 on [, ] and is such that  (x0) = y0  if and only if  satisfies the integral equation 

   

0

0

x

(x) y  f [t, (t)] dt

x

     (2) 

for all x  [,]. 

Proof. If   satisfies the differential equation dy/dx = f(x, y) on [, ], then  

   
d (x)

dx


= f[x, (x)]  (3) 

 for all x  [,]. So, (x) is a continuous function on [, ], because it is differential on [,]. 

Since (x) is continuous on [, ] and f is continuous on D, the function F(x) = f [x, (x)] is continuous 

on [, ], so that it is integrable on [, ].   Integrating (3) from x0 to x. 

  

0

x

0

x

(x) - (x )  f [t, (t)] dt     

 Since (x0) = y0, so  satisfies the integral equation (2) for all x [,].  

 Conversely, let (x) satisfies the integral equation (2) for all x  [, ]. Using the fundamental 

theorem of integral calculus, differentiation yields  

  
( )

[ , ( )]
d x

f x x
dx


  

  for all x  [, ] and so  satisfies the differential equation  
dy

f(x,y)
dx

  on [, ]. Further from (2), we 

get (x0) = y0.  



Ordinary Differential Equations-I  MAL-514 

DDE, GJUS&T, Hisar  18 |  

 

Thus (x) is a solution of (1) if and only if, it satisfies the integral equation (2).  

Note Equation (2) is called an integral equation because the unknown function (x) appears under the 

integral sign.  

1.6 Integral Equation 

 An integral equation is an equation in which an unknown function appears under the integral 

sign. If the limits of integration are fixed, an integral equation is called a Fredholm Integral Equation. If 

one limit is variable, it is called a Volterra Integral equation. Volterra Integral equations are divided into 

two groups referred to as the 1
st
 and 2

nd
 kind.  

 A volterra integral equation of the first kind is  

   
x

a

f(x)= K(x,t) (t)dt  (1) 

 where (t) is the function to be solved for, f(x) is a specified function i.e. given known function 

and K(x, t) is the integral Kernel i.e. a known function of two variables. Thus if the unknown function is 

only under the integral sign, the equation is said to be of 1
st
 kind.  

 If the unknown function is both inside and outside the integral, equation is called of 2
nd

 kind. i.e.   

   

x

a

(x) f(x)   λ K(x, t) (t)dt     

 The parameter  is an unknown factor (may be  = 1).  

 An example of integral equation is  

  

1

-x -(x 1) -xy

0

1 1 1
f(x)  e  - e (x 1)e  f(y)dy

2 2 2

      

 which has solution f(x) = e
-x

. 

 An integral equation is called homogeneous if f(x) = 0 i.e. known function f is identically zero. If 

f is non-zero, it is called inhomogeneous integral equation.  
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 Of course, not all integral equations can be written in one of these forms.          

Reduction of Initial value problems to Volterra integral equations 

 Now, we shall illustrate that how an initial value problem associated with a linear differential 

equation and auxiliary conditions reduce to a Volterra integral equation.   

Example 1.6.1 Convert the given IVP to an integral equation 

   y"(t) + y(t) = cos(t),   y(0) = 0, y'(0) = 0 (1) 

   y"(t) = -y(t) + cos t, integrate from 0 to t 

   
t t

0 0

y"(ξ) dξ [ y(ξ) cos(ξ)] dξ     

   y'(t) – y'(0) = 
t

0

[ y(ξ) cos(ξ)] dξ   

   y'(t) = 
t

0

y(ξ) dξ [sin(t) - sin(0)] [y'(0)  0]     (2) 

 Integrating (2) again  

   
t t s t

0 0 0 0

y'(ξ) dξ y(ξ) dξ ds sin (ξ) dξ       

   y(t) – y(0) = 

t

0

y(ξ)(t - ξ)dξ [-cos t  cos 0]    

 The solution is  

   y(t) = 

t

0

y(ξ)(t - ξ)dξ [1  cos t]    (3) 

 To check the solution, start differentiating (3) 

  

t

0

d
y'(t)  y(ξ)(t - ξ)dξ sin t 

dt
     
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   = 
t

0

y(ξ)(t - ξ)dξ sin t
t


 


 

  
t

0

y'(t)  y(ξ) dξ sin t    

 Differentiating again 

  y"(t) = 
t

0

d
y(ξ)dξ cos t = -y(t) + cos t

dt
   

  y"(t) + y(t) = cos (t), which is the given IVP. 

Example 1.6.2 Reduce IVP to integral equation 

  y"(t) – 2ty'(t) – 3y(t) = 0,   y(0) = 1, y'(0) = 0 

  y"(t) = 2ty'(t) + 3y(t),  

 Integrate w.r.t. t from 0 to t 

  y'(t) – y'(0) = 
t t

0 0

2ξ y'(ξ) dξ 3  y(ξ) dξ   

  y'(t) – 0  = 

t t

0

0 0

2ξ y(ξ) 2 y(ξ)dξ 3 y(ξ)dξ
t
    

  y'(t)  = 

t

0

2[t y(t) - 0]  y(ξ)dξ   

Again integrating  

  y(t) – y(0) = 

t t s

0 0 0

 2 ξ y(ξ)dξ y(ξ) dξ ds    

  y(t) = 

t t

0 0

1  2 ξ y(ξ)dξ y(ξ) (t -ξ)dξ     
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  y(t) = 
t

0

 1  (t ξ) y(ξ)dξ  , which is a Volterra integral equation of 2
nd

 kind with K(t, ) = 

(t + ). 

Verification  

 This Volterra integral equation satisfies the given initial conditions. We can obtain the original 

IVP by twice differentiating it.  

Differentiating once 

 y'(t)  =    
t

ξ t ξ 0

0

dt d0
(t ξ) y(ξ)dξ (t ξ) y(ξ) (t ξ) y(ξ)

dt dtt  


    


 

 y'(t)  = 
t

0

y(ξ)dξ 2t y(t)  

Again differentiating  

 y"(t)  = 
t

ξ t ξ 0

0

dt d0
 y(ξ)dξ  y(ξ)  y(ξ)

dt dtt  


 


 + 2[1. y(t) + t y'(t)] 

  = 0 + y(t) – 0 + 2 y(t) + 2t y'(t) 

  = 3 y(t) + 2t y'(t) 

 y"(t) – 2t y'(t) – 3 y(t) = 0 

which is the given IVP. 

 

Note Cauchy Method 

1. 

x x x

a a a

(x)dx dx  (x-ξ) (ξ)dξ      or 

 

x s x

a a a

(y)dy ds  (y)(x-y) dy     
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2. 
2 1x xx x

2

1 2

0 0 0 0

1
( (x)dx ) dx dx  (x ξ)  (ξ) dξ

2!
       

3. 
n n-1 2x x xx x

n n-1

0 0 0 0 0

1
........ (t)(dt)    (x ξ)  (ξ) dξ

( 1)!n
  

         

 

 

Example 1.6.3  

  
2

2

d y dy
+A(t) B(t)y(t) g(t)

dt dt
   (1) 

  y(a) = c1,  y'(a) = c2. (2) 

We write 

  
2

2

d y dy
A(t)  B(t)y(t) g(t)

dt dt
     

We now integrate over the interval [a, t] to obtain  

  
t t t

2

a a a

dy
c - A(ξ)y'(ξ)dξ- B(ξ)y(ξ)dξ g(ξ)dξ

dt
      

   = 

t t t

a a a

[-A(ξ)y(ξ)] A'(ξ)y(ξ)dξ - B(ξ)y(ξ)dξ g(ξ)dξ  t

a      

   =  

t t

1

a a

[A'(ξ)-B(ξ)]y(ξ)dξ g(ξ)dξ -A(t)y(t) c A(a)     (3) 

Integrating (3) again, we obtain 

  y(t) – c1 – c2(t-a) =  

t t

a a

(t s)[A'(s) B(s)]y(s)ds A(s)y(s)ds     
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        + 
t

1

a

(t s)g(s)ds c A(a)(t-a)  . 

This implies  

  y(t) = 
t

a

[(t s){A'(s) B(s)}-A(s)]y(s)ds f(t)    (4) 

where the non-homogeneous term f(t) is  

  f(t) = 
t

1 2 1

a

[(t s)g(s)ds (t-a)[c (A(a)) c ] c     (5) 

Equation (4) is a Volterra integral equation of the second kind of the type  

  y(t) = f(t) + 
t

a

K(t,s)y(s)ds  (6) 

in which the kernel K(t,s) is given by  

  K(t, s) = (t-s) [A' (s) –B(s)] - A(s). (7) 

 Integral equation (4) is equivalent to the given initial value problem and it takes care of auxiliary 

condition in (2).  

1.7 Existence Theorem 

 Let I denote an open interval on the real line - < t <, that is, the set of all real t satisfying a < t 

<b for some real constants a and b. The set of all complex-valued functions having k continuous 

derivatives on I is denoted by C
k
(I). If f is a member of this set, one writes f  C

k
 (I), or  f  C

k 
on I. The 

symbol f  is to be read “is a member of”  or “belongs to.” It is convenient to extend the definition of C
k 

to intervals I which may not be open. The real intervals a < t <b, a  t  b, a  t <b, and  a < t b will be 

denoted by (a, b), [a, b], [a, b), and (a, b], respectively. If f C
k 

on (a, b) and in addition the right hand 

kth derivative of f exists at a and is continuous from the right at a, then f is said to be of class C
k
 on [a, 

b). Similarly, if the kth derivative is continuous from the left at b, then f  C
k
 on (a, b]. If both these 

conditions hold, one says f  C
k 

on [a, b]. 



Ordinary Differential Equations-I  MAL-514 

DDE, GJUS&T, Hisar  24 |  

 

 If D is a domain in the real (t, y) plane, the set of all complex valued functions f defined on D 

such that all kth order partial derivatives 
k
f/t

p 
y

q
 (p + q = k) exist and are continuous on D is denoted 

by C
k
(D), and one writes f  C

k
 on D or f  C

k 
(D).  

 The sets C
0
(I) and C

0
(D), the continuous functions on I and D, will be denoted by C(I) and C(D), 

respectively. 

1.7.1 Definition ( - approximate solution) 

 Let f be a real valued continuous function on a domain D in the  (t, y) plane. An  - approximate 

solution of an ODE of the first order  

   
dy

f(t, y)
dt

   (E) 

on a t-interval I is a function  C(I) such that  

i) (t, (t))  D for all t  I  

ii)   C
I
(I), except possibly for a finite set of points S on I where '(t)may have simple 

discontinuities (i.e., at such points of S, the right and left limits of '(t) exist but are not equal), 

iii) '(t) – f(t, (t) <  for all t  I – S  

Remark  

(1) In geometrical language, (E) prescribes a slope f(t, y) at each point of D. A solution  on I is a 

function whose graph [the set of all points (t, (t)), t  I] has the slope f(t, (t)) for each t  I. 

(2)  When  = 0, then it will be understood that the set S is empty, i.e. S = . So (ii) holds for all t  I. 

(3) The statement (ii) implies that  has a piecewise continuous derivative on I, and we shall denote 

it by  

   
1

p  C (I)       

(4) Consider the rectangle 

   R = {(t, y): t-t0  a, y-y0 b, a > 0, b > 0}   (1)  
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 about the point (t0, y0). 

 Let f  C on the rectangle R. Since the rectangle R is a closed set, so the continuous function f on 

R is bounded. Let 

   M = max f(t, y) on R (2) 

 and  = min 
b

a,
M

 
 
 

  (3) 

 

 

 

 

 

Theorem 1.7.2 (Cauchy – Euler construction of an approximate solution) or  - Approximation 

Theorem  

 Let f  C on the rectangle R. Given  > 0, there exists an  - approximate solution  of  ODE of 

first order,  
dy

f(t, y)
dt

  (1) 

 on the interval I = {t: t-t0  } such that (t0) = y0,  being some constant.  

Proof  Let  > 0 be given. We shall construct an  - approximate solution for the interval [t0, t0 + ]. A 

similar construction will hold for [t0- , t0].  

 This approximate solution will consist of a polygonal path starting at (t0, y0), i.e. a finite number 

of straight- line segments joined end to end. 

 Since f is continuous on the closed rectangle  

   R = {(t, y): t-t0  a, y-y0 b, a > 0, b > 0} (2) 

 So f is bounded and uniformly continuous on R. Let   
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R

M max f(t,y)   (3) 

 and   
b

min a,
M


 

  
 

  (4) 

 Then  (i) 
b

a if M
a

          (fig 1(a)) 

  (ii) 
b b

   if  M  
M a

       (fig 1(b)) 

 In the first case, we get a solution valid in the whole interval t-t0  a, whereas in the second case, 

we get a solution valid only on I, a sub-interval of t-t0   a. 

 

Figure 1 

 We consider the second case when 
b

M  
a

 . Since f is uniformly continuous on R, therefore, for given  > 0, there exists a real number  = () > 0 such that 

   f(t, y) f(t, y)        (5) 

 whenever  

   t - t   ,  y - y       , where (t, y), (t, y)  R  (6) 

Now divide the interval [t0, t0 + ] into n subintervals such that  

   t0  < t1 <. . . <tn = t0 +  

and  

   
k k-1max t - t min  ,  .

M






 

  
 

 (7) 
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Figure 2 

 Draw two lines from C(t0, y0) one having the slope M and the second line having the slope –M 

and then draw third line t = t0 + . These three lines will enclose the region T.  

 Starting from the point C(t0, y0) we draw a straight-line segment with slope f(t0, y0) proceeding to 

the right of t0 until it intersects the line t = t1 at some point P1 (t1, y1). Here, slope of line CP1 is f(t0, y0). 

This line segment, CP1, must lie inside the triangular region T, as shown in the figure 2 above because, 

we have, in this case, 

    = 
b

M
  (8) 

 Now, at the point P1 (t1, y1), we construct to the right of t1 a straight-line segment with slope f(t1, 

y1) upto the intersection with line t = t2, say at the point          P2(t2, y2). 

  

Continuing in this way, after a finite number of steps, the resultant path (t) will meet the line t = t0 +  

at the point Pn (tn, yn). Further, this polygon path (fig. 3) will lie entirely within the region T. This  is the 

required -approximate solution.  

 



Ordinary Differential Equations-I  MAL-514 

DDE, GJUS&T, Hisar  28 |  

 

 

 

 

 

 

 

 

 

Figure 3 

 The analytical expression for the solution function (t) is  

  (t) = (tk-1) + f (tk-1, (tk-1)) (t - tk-1) (9) 

 for t  [tk-1, tk] and k = 1, 2,...., n and (t0) = y0. From the construction of the function , it is clear 

than   
1

pC  on [t0, t0 + ], and that  

  (t) - (t) M t t      (10) 

 where t, t  are in [t0, t0 +]. 

 If t is such that tk-1   t   tk, then equations (7) and (10) together imply that  

  k-1 k-1(t) - (t ) M t - t    (11) 

   k k-1M t - t  

    ε
ε

δ
M δ

M
   

 From equations (4), (5), (7) and (9), we obtain  

   '(t) – f(t,  (t)) = f(tk-1,  ( tk-1)) – f(t,  (t)  ,  (12) 

 

Required Polygon 

path 

C 

Pn(tn, yn) 
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 where  tk-1  t  tk . 

 This shows that  is an - approximate solution as desired. By similar arguments, the theorem can 

be proved on the interval [t0-, t0]. Hence  is an - approximate solution on the interval [t0-, t0 + ]. 

Remark 

 After finding an “- approximate solution” of an IVP, one may prove that there exists a sequence 

of these approximate solutions which tend to a solution. For this, the notion of an equicontinuous set of 

functions is required.  

1.7.3 Equicontinuous Set of Functions 

 A set of functions F = {f} defined on a real interval I is said to be equicontinuous on I if, for 

given any  > 0, there exists a real number  =  () > 0, independent of f  F, such that  

  f(t) f(t)   ε   

 whenever εt t δ  for  t, t  I    

Theorem 1.7.4 (Due to Ascoli) 

 On a bounded interval I, let F = {f} be an infinite, uniformly bounded, equicontinuous set of 

functions. Prove that F contains a sequence which is uniformly convergent on I. 

Proof Let {rk}, k = 1,2........, be all the rational numbers present in the bounded interval I listed in some 

order. The set of numbers {f(r1): f  F}is bounded, hence there exists a sequence of distinct functions 

{fn1}, fn1  F, such that sequence          {fn1 (r1)} is convergent (By Bolazano Weierstrass Theorem, every 

infinite bounded sequence has a subsequence, which is convergent).  

 Similarly, the set of number {fn1 (r2)} has a convergent subsequence {fn2 (r2)}. 

Continuing in this way, we obtain, an infinite set of functions fnk  F, n, k = 1, 2, ..., such that {fnk} 

converges at r1, r2,...., rk. 

Define  

   gn = fnn.   (1) 
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 Now, it will be shown that {gn) is the required sequence which is uniformly convergent on I. 

Clearly, {gn} converges at each of the rationals r1,r2,....rk on I. Thus, given any  > 0, and each rational 

number rk  I, there exists an integer N(rk) such that  

   |gn (rk) – gm(rk)| <  for n, m > N(rk). (2) 

 Since the set F is equicontinuous, there exists a real number =  = () > 0, which is independent 

of f  F, such that  

   f(t) f(t) ε  ,  (3) 

whenever  

   εt t δ  and  t, t   I    . 

 We divide the interval I into a finite number of subintervals, I1, I2, ….. Ip such that the length of 

the largest subinterval is less than εδ , i.e.,  

   max{l(Ik):k = 1, 2, ..... ,p} < εδ .  (4) 

 For each such subinterval Ik, choose a rational number k kr   I . If t  I, then      t  Ik for some 

suitable k. Hence, by (2) and (3), it follows that  

  n m n n k n k m k m k mg (t)-g (t) g (t)-g (r ) g (r )-g (r ) g (r ) - g (t)       (5) 

    <  +  +  = 3, 

provided that  

   m, n > max {N 1 ε 2 ε p(r ), N  (r ),....., N  (r )}  

 This proves the uniform convergence of the sequence {gn} on I, where gn  F for each n  N. 

This completes the proof.  

Remark The existence of a solution to the initial value problem, without any further restriction on the 

function f(t, y) is guaranteed by the following Cauchy-Peano theorem.  
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Theorem 1.7.5 Cauchy-Peano Existence Theorem 

 If f  C on the rectangle R, then there exists a solution   C
1
 of the differential equation.  

   
dy

f(t,y)
dt

  

 on the interval 0 0 0t t   α  for  which (t ) = y , where   

  R = {(t, y): 
0 0

b
t t a, y y b,a 0, b 0 }, α min a, ,

M

 
        

 
 

  M = max f(t,y) on R . 

Proof. Let {n}, n = 1,2,.........., be a monotonically decreasing sequence of positive real numbers which 

tends to 0 as n. By Cauchy-Euler Construction Theorem, for each such n there exists an n- 

approximate solution, say n of ODE  

  
dy

f(t, y)
dt

    (1) 

on the interval 

  0 0 0t - t α with (t ) yn   (2) 

It is being given that  

  
b

α min a,
M

 
  

 
  (3) 

  M = max f(t, y) for (t, y)  R (4) 

  R = {(t, y): t - t0  a, y - y0  b, a > 0, b > 0} (5) 

Further, from Cauchy Euler Construction Theorem 

  n n(t) - (t) M t - t    (6) 

 for t, t  in [t0, t0 + ]. 

 Applying (6) to t  = t0 and since,  
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0

b
t - t

M
  ,  (7) 

it follows that  

  n(t) - y0 < b for all t in t - t0 < . (8) 

 This implies that the sequence {n} is uniformly bounded by y0 + b. 

 Further, (6) implies that the sequence {n} is an equicontinuous set. Therefore, by Ascoli Lemma 

there exists a subsequence {nk}, k= 1, 2, ...., of {n}, converging uniformly on the interval [t0- , t0+] 

to a limit function , which must be continuous, since each n is continuous.  

 Now, we shall show that this limit function  is a solution of (1) which satisfies the required 

specification. For this, we write the relation defining n as an n-approximate solution in an integral 

form, as follows:  

  n(t) = y0 + 

0

t

t

[f(s, ( )) ( )]n ns s ds    (9) 

 where  

  ( ) ' ( ) ( ,  ( ))n n ns s f s s     (10) 

 at those points where 'n exists and n(s) = 0 otherwise.  

 Because n is an n - approximate solution, so 

  n(s)|   n.   (11) 

 Since f is uniformly continuous on R, and nk   uniformly on [t0 - , to + ] as k  , it 

follows that  

  f(t, nk(t))   f(t, (t)) 

 uniformly on [t0 - , to + ] as k  . 

 Replacing n by nk in (9) and letting k  , 
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  (t) = y0 + 

0

t

t

f(s, (s))ds  (12) 

From (12), we get  

  (t0) = y0   (13) 

and upon differentiation, as f is continuous,  

  ( , ( ))
d

f t t
dt


 .  (14) 

 It is clear from (13) and (14) that  is a solution of ODE (1) through the point (t0, y0) on the 

interval  t - t0    of class C
1. 

This completes the proof of the theorem.    

Remarks  

(1)  If uniqueness of solution is assured, the choice of a subsequence in -approximation theorem is 

unnecessary.  

(2) It can happen that the choice of a subsequence is unnecessary even though uniqueness is not 

satisfied. Consider the example. 

   1/3dy
y

dt
    (1) 

 There are an infinite number of solutions starting at the point C(0,0) which exist on I = [0,1].  

 For any c, 0  c   1, the function c defined by  

  3/2
c

          0             0 t c

(t)     2(t c)
     c  t 1

3



 


   
  

 

 (2) 

 is a solution of (1) on I. If the construction of -approximation theorem is applied to equation (1), one 

finds that the only polygonal path starting at the point C(0,0) is 1. This shows that this method cannot, 

in general, gives all solution of (1) 
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Theorem 1.7.6 Let f   C on a domain D in the (t, y) plane, and suppose (t0, y0) is any point in D. Then 

there exists a solution  of 

  0 0

dy
f(t, y) for  (t, y)  D,  y(t ) y

dt
    (1) 

on some t-interval containing t0 in this interior. 

Proof Since domain D is open, there exists an r > 0 such that all points whose distance from C(t0, y0) is 

less than r, are contained in D. Let R be any closed rectangle containing C(t0, y0) and let R is contained 

in this open circle of radius r. Then required result is obtained by applying Cauchy-Peano Existence 

Theorem on (1). 

1.8  Check Your Progress  
 

Q.1      Define an integral equation along with its types. 

Q.2 Define an IVP. Prove that solution of an IVP is equivalent to that of Volterra Integral Equation. 

Q.3 Define an ε-approximate solution of an ordinary differential equation of first order. 

Q.4 Transform the IVP                                          ,  to an equivalent 

integral equation.  

1.9 Summary 

In this chapter, first of all the reader is made familiar with certain basic concepts of differential 

equations and real function theory. Existence theorems namely Cauchy-Euler construction theorem and 

Cauchy-Peano Existence theorem are proved to show the existence of solutions of initial value problems. 

A relation between initial value problem and Volterra Integral equation is established with suitable 

illustrations.  

1.10 Keywords 

 Differential equations, Initial value problem,  - approximate solution, Existence of solutions.     
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1.11  Self-Assessment Test  
 

Q. 1 Obtain the Volterra integral equation corresponding to each of the following initial value 

problems.  

(a) y'' + y = 0;  y(0) = 1, y'(0) = 0 

(b) y'' + y = sin t;  y(0) = 1, y'(0) = 1 

(c) y'' - y + t = 0; y(0) = 1, y'(0) = 0 

(d) y'' + y = f(t); y(0) = 1, y' (0) = 0 

(e) y'' + ty = 1;  y(0) = y'(0) = 0. 

 

1.12  Answers to check your progress . 
 

Answer 4                    
 

 
      . 
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Chapter-2 

EXISTENCE AND UNIQUENESS OF SOLUTIONS   

 

Structure:  
 

2.0   Learning Objectives  

2.1   Introduction  

2.2   Existence and Uniqueness of solution 

2.3   The Method of Successive Approximation or Picard Iteration Method 

2.4   Solution of Initial Value Problems by Picard method 

2.5    Check Your Progress  

2.6    Summary  

2.7    Keywords  

2.8    Self-Assessment Test  

2.9    Answers to check your progress  

2.10  References/ Suggested Readings  

 

2.0 Learning Objectives 

This chapter is concerned with a very important property of ordinary differential equations i.e. 

existence and uniqueness of solutions. Picard’s method of successive approximations, which apart from 

being a mere numerical technique to approximate solutions has far reaching theoretical implications as 

well, is applied, to obtain approximate solutions of initial value problems.  

2.1 Introduction    

In the previous chapter, we did not device a general method which can assert theoretically the 

existence and uniqueness of solutions of a wider class of first order ordinary differential equations. This 
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chapter discusses in detail the approximation method of Picard to the solution of the initial value 

problem of the general first order non-linear differential equations of the type.  

    ( , ),
dy

f x y
dx

  y (x0) = y0,   (1) 

where f(x,y) is some arbitrary function defined and continuous in some neighbourhood of (x0, y0). This 

method is also useful even when exact solutions are available, especially, if the exact solution is quite 

involved and we are only interested in the numerical value of the solution function at different points. 

The Picard’s theorem gives the unique solution of the above initial value problem (1) by the method of 

successive approximations, using the integral equation equivalent to the given non-linear differential 

equation. 

2.2 Existence and Uniqueness of solution 

Theorem 2.2.1 The Existence and Uniqueness Theorem (Picard-Lindelof Theorem) 

Hypothesis 

1. Let D be a domain of the xy plane, and let f be a real function satisfying the following two 

requirements.    

(i) f is continuous in D;  

(ii) f satisfies a Lipschitz condition (with respect to y) in D; that is, there exists a constant k > 0 such 

that 

   f(x,y1) – f(x, y2)   k y1 – y2 (1) 

 for all   (x,y1), (x, y2)  D.  

2. Let (x0, y0) be an interior point of D; let a and b be such that the rectangle     R: x - x0   a,  y – 

y0    b, lies in D; let M = max f(x,y) for (x, y)  R, and let h  = min (a, b/M).  

Conclusion 
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 There exists a unique solution  of the initial value problem 

  ( , ),
dy

f x y
dx

     

  y (x0) = y0, (2) 

 on the interval x - x0   h 

Proof We shall prove this theorem by the method of successive approximations. Let x be such that   x – 

x0  h. We define a sequence of functions. 

  1, 2, 3,….., n,….. 

called the successive approximations (Picard iterants) as follows:  

        
0

1 0 0( ) [ , ] 
x

x
x y f t y dt    , 

   
0

2 0 1( ) [ , ( )] 
x

x
x y f t t dt    , 

   
0

3 0 2( ) [ , ( )] ,
x

x
x y f t t dt     (3) 

    . 

    . 

    . 

   
0

0 1( ) [ , ( )] .
x

n n
x

x y f t t dt      

 

 

 

 

 

 

 



Ordinary Differential Equations-I  MAL-514 

DDE, GJUS&T, Hisar  40 |  

 

Figure The case in which 
b

a
M

  so that h = min ,
b b

a
M M

 
 

 
 smaller interval          x - x0  h < a 

associated with the smaller rectangle R1 defined by x - x0  h < a,  y – y0  b. 

 

We shall divide the proof into five main steps. 

1. The functions {n} defined by (3) actually exist, have continuous derivatives, and satisfy the 

inequality n (x) – y0  b on x – x0  h; and thus f[x, n(x)] is defined on this interval.  

2. The functions {n} satisfy the inequality  

   n (x) - n-1(x) 
0

( )
.  on x - x h

!

nM kh

k n
   

3. As n  , the sequence of functions {n} converges uniformly to a continuous function  on 

0x x h  . 

4. The limit function  satisfies the differential equation dy/dx = f(x,y) on 0x x h   and is such 

that (x0) = y0.  

5. This function  is the only differentiable function on  0x x h   which satisfies the differential 

equation dy/dx=f(x,y) and is such that (x0) = y0. 

 Throughout the entire proof we shall consider the interval [x0, x0 + h]; similar   

 arguments hold for the interval [x0 – h, x0]. 

1. We shall prove the first step by using mathematical induction. Assume that  n-1 exists, has a 

continuous derivative, and is such that n-1(x) – y0  b for all x such that x0  x  x0 + h. Thus [x, 

n-1(x)] lies in the rectangle R and so            f [x, n-1(x)] is defined and continuous and satisfies  

   f [x, n-1(x)]  M on  [x0, x0 + h]. 

 Since     n(x) = y0 + 
0

1[ , ( )] ,
x

n
x

f t t dt   

 we see that n also exists and has a continuous derivative on [x0, x0+h]. Also, 
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        n(x) - y0| = 
0

1[ , ( )]
x

n
x

f t t dt   

    
0 0

1[ , ( )]  
x x

n
x x

f t t dt M dt     

    =  M(x – x0)  Mh  b.  

 Thus, [x, n(x)] lies in R and hence f[x, n (x)] is defined and continuous on [x0, x0 + h]. Clearly 

1 defined by 

    1(x) = y0 + 
0

0[ , ]
x

x
f t y dt  

 exists and has a continuous derivative on this interval. Also,  

   1(x) - y0| 
0

0 0 f [t,y ] dt  M(x - x )  b
x

x
    

 and so f[x, 1(x)] is defined and continuous on the interval under consideration. Thus, by 

mathematical induction, each function n of the sequence (3) possesses these desired properties on [x0, 

x0+ h].  

2. In this step we again employ mathematical induction. We assume that  

     n-1(x) - n-2(x)| 
2

1

0 ( )
( 1)!

n
nMk

x x
n


 


 on [x0, x0 + h]. (4) 

 Then  

    n(x) - n-1(x) = 
0

1 2{ [ , ( )] [ , ( )]}
x

n n
x

f t t f t t dt    

     
0

1 2[ , ( )] [ , ( )]
x

n n
x

f t t f t t dt     

 Since by step 1, n(x) – y0  b for all n on [x0, x0 +h], using the Lipschitz condition (1) we have  

    f [t, n-1(t)] – f [t, n-2(t)]  k n-1(t) - n-2(t) 

Thus 
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   n(x) - n-1(x) 
0

1 2( ) ( )
x

n n
x

k t t dt     

Now using the assumption (4), we have  

   n(x) - n-1(x)| 
0

2
1

0( )
( 1)!

n
x

n

x

Mk
k t x dt

n


 

  

     = 
0

1
1

0( )
( 1)!

n
x

n

x

Mk
t x dt

n




   

     = 
1 1

0
0

0

( )
( )

( 1)! !

nn n
n

xt xMk Mk
x x

xn n n

  
  

  
 

Thus, we have   

   n(x) - n-1(x)| 
1

0( )
!

n
nMk

x x
n



  , (5) 

which is precisely inequality (4) with (n-1) replaced by n. When n =1, we have as in Step 1:  

    1(x) – y0 M(x - x0). 

This is inequality (5) when n = 1. Thus by induction the inequality (5) is satisfied on [x0, x0 + h] for all n. 

Since  

   
1 1

0

( )
( ) ,

! ! !

n n n
n nMk Mk M kh

x x h
n n k n

 

    

we have  

   n(x) - n-1(x)  
( )

!

nM kh

k n
 (6) 

for  n = 1, 2, 3, ………… on [x0, x0 + h]. 

3. Now the series of positive constants 

   
2 3

1

( ) ( ) ( )
...

! 1! 2! 3!

n

n

M kh M kh M kh M kh

k n k k k





     
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converges to   [ 1]khM
e

k
 . 

Also the series  

    
1

1

[ ( ) ( )]
n

i i

i

x x  



   

is such that (6) is satisfied for all x on the interval x0  x  x0 + h, for each n = 1, 2, 3… Thus by the 

Weierstrass M –test, the series  

   
0 1

1

[ ( ) ( )]
n

i i

i

y x x  



   

converges uniformly on [x0, x0 + h]. Therefore its sequence of partial sums {Sn} converges uniformly to 

a limit function  on [x0, x0 + h]. But  

   Sn(x) = 
0 1

1

[ ( ) ( )] ( ).
n

i i n

i

y x x x  



    

 In other words, the sequence n converges uniformly to  on [x0, x0 + h]. Thus, each n is 

continuous for [x0, x0 + h]. Theorem A shows that the limit function  is also continuous on [x0, x0 + h]. 

4. Since each n satisfies n(x) – y0  b on [x0, x0 + h], we also have               (x) – y0  b on [x0, 

x0 + h]. Thus f [x, (x)] is defined on this interval and we can further apply the Lipschitz 

condition (1) and obtain  

      f [x, (x)] – f [x, n(x)]    k (x) - n(x) (7) 

for x  [x0, x0 + h]. By step 3, given  > 0, there exists N > 0 such that            (x) - n(x) <  /k for all n 

> N and all x on [x0, x0 + h]. Thus  

   k(x) - n(x) < k 
k




 
 

 
 (8) 

 for all n > N and all x on the interval under consideration. Thus from (7) and (8) we see that the 

sequence of functions defined by f [x, n(x)] for n = 1, 2, 3, ….. converges uniformly to the function 
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defined by f [x, (x)] on [x0, x0 + h]. Also, each function defined by f [x, n(x)] for n = 1, 2, 3, …… is 

continuous on this interval. Thus theorem B applies and  

  (x) = 
0

1 0lim ( ) lim [ , ( )] 
x

n n
xn n

x y f t t dt
 
 

 
    

    = 
0

0 lim  [ , ( )] 
x

n
x n

y f t t dt





   

    = 
0

0  [ , ( )] .
x

x
y f t t dt   

Thus the limit function  satisfies the integral equation 

   (x) = y0  + 
0

[ , ( )] 
x

x
f t t dt  

on [x0, x0 +h]. Thus by the basic lemma, the limit function  satisfies the differential equation dy/dx = 

f(x, y) on [x0, x0 +h] and is such that (x0) = y0. We have thus proved the existence of solution of the 

basic initial value problem (2) on the interval [x0, x0 +h].  

5. We now prove that the solution  is unique. Assume that  is another differentiable function 

defined on [x0, x0 + h] such that 

   [ , ( )]
d

f x x
dx


  

 and (x0) = y0. Then certainly  

  (x) – y0 < b  (9) 

on some interval [x0, x0 +]. Let x1 be such that (x) – y0 < b for x0  x < x1 and (x1) – y0 = b. 

Suppose x1 < x0 + h. Then 

  1 0
1

1 0 1 0

( )x y b b
M M

x x x x h

 
   

 
 

But by the mean – value theorem there exists , where x0 <  < x1, such that 

  M1 = '()= f [, ()]  M, 
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a contradiction. Thus x1  x0 + h and the inequality (9) holds for x0  x < x0 + h, and so 

   (x) – y0  b (10) 

on the interval x0  x  x0 +h. 

 Since  is a solution of dy/dx =f(x,y) on [x0,  x0+h] such that  (x0) = y0, from the basic lemma 

we see the  satisfies the integral equation.  

   (x) = y0 + 
0

[ , ( )]
x

x
f t t dt  (11) 

on  [x0, x0 + h]. We shall now prove by mathematical induction that  

   (x) - n(x)  0( )

!

n nk b x x

n


 (12) 

on [x0, x0 + h].  We assume that  

   (x) - n-1(x)  
 

1 1

0( )

1 !

n nk b x x

n

 


 (13) 

on [x0, x0 + h].  Then from (3) and (11) we have  

   (x) - n(x) = 
0

1{ [ , ( )] [ , ( )]}
x

n
x

f t t f t t dt     

     
0

1[ ,  ( )] [ ,  ( ) ]
x

n
x

f t t f t t dt     

Using Lipschitz condition, we have  

   (x) - n(x) 
0

1( ) - ( ) ]
x

n
x

k t t dt     

Using assumption (13), we have  

   (x) - n(x) 
0

1 1

0( )
 

( 1)!

n n
x

x

k b t x
k dt

n

 


  
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     0 0

0

( ) ( )

( 1)! !

n n nn xt x k b x xk b

xn n n

  
  

  
 

which is (13) with (n-1) replaced by n. When n = 1, we have  

   (x) - 1(x) 
0

0[ , ( )] [ ,  ]
x

x
f t t f t y dt   

     
0

0 0( ) ( )
x

x
k t y dt kb x x    , 

which is (12) for n = 1. Thus by induction the inequality (12) holds for all n on          [x0, x0 + h]. Hence 

we have.  

   (x) - n(x) 
( )

!

nkh
b

n
  (14) 

for n = 1, 2, 3…. on [x0, x0 +h]. 

 Now the series 
0

( )

!

n

n

kh
b

n





  converges, and so 
( )

lim  0
!

n

n

kh
b

n
 . Thus from (14) (x) = lim

n
n(x) 

on [x0, x0 +h]. But (x) =  lim
n

n(x) on this interval Thus,  

    (x) = (x) 

on [x0, x0 +h]. Thus the solution  of the basic initial value problem is unique on            [x0, x0 +h].  

 We have thus proved that the basic initial – value problem has a unique solution on [x0, x0 +h], 

we can carry through similar arguments on the interval            [x0-h, x0]. We thus conclude that the 

differential equation dy/dx = f(x,y) has a unique solution  such that (x0) = y0 on x – x0  h.  

2.3 The Method of Successive Approximation or Picard Iteration 

Method 

 This is very useful method to deduce the existence of solution. We know that  is a solution of 

IVP  

   x' = f(t, x)  (E)  
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  on |t – |    s.t.   () =    

 iff  satisfies the integral equation  

  (t) =  + 

t

f(s, (s)) ds


   ,   |t – |  .   

2.3.1 Definition The successive approximations for (E) are defined to be the functions i.e. a 

sequence of functions 0(t), 1(t), ……… (called successive approximations) as follows:  

   0(t) =  

 and    k+1(t) =   + 

t

kf (s, (s)) ds


   ,   k = 0, 1, 2, …….;  |t – |   

 i.e.   0(t) =  

   1(t) =  + 

t

0f (s, (s)) ds


  

    =  + 

t

f(s, ξ) ds


  

   2(t) =  + 

t

1f(s, (s)) ds


  

   …………………………. 

   …………………………. 

   n(t) =  + 

t

n-1f (s, (s)) ds


 . 

2.3.2 Explanation If  () = , let us define the constant function 0(t) = . Though this constant 

function satisfies the initial condition, it does not in general satisfies the integral equation. But if we find  
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 1(t) =  + 

t

0f(s, (s)) ds


 , then 1(t) may be a little more closer to (t). In a similar manner, we 

can find 2(t), 3(t), ……… Continuing this process successively, we can obtain  

   n(t) =  + 

t

n-1f(s, (s)) ds


  

 Now the crux of the Picard Theorem is that n(t)  (t) as n   giving the unique solution of 

the IVP.  

Note: If one solves the given linear equation, the Picard Successive Approximations converge to the 

exact solution of the initial value problem.  

2.3.3 Geometrical Interpretation       In geometrical 

language, we are to devise a method for constructing a function x = x(t) whose graph passes through the 

point (, ) and that satisfies the differential equation x' = f (t, x) in some neighborhood of .  

 

 

Process of Iteration 

 We begin with a crude approximation to a solution and prove it step by step by applying a 

repeatable operation, which will bring us as close as we please to an exact solution. In the integral 

equation 

       x(t) =  + 

t

f (s, x(s)) ds,


  (1) 

 the dummy variable s is used to avoid confusion with the variable upper limit t on the integral I. 

A rough approximation to a solution is given by the constant         0(t) = , which is simply a horizontal 

straight line through the point (, ). We insert this approximation in the right side of equation (1) in 

order to obtain a new and perhaps better approximation x1(t) as follows. 
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   x1(t) =   + 

t

0f (s, x (s)) ds


     

 The next step is to use x1(t) to generate another and perhaps even better approximation x2(t) in 

the same way  

    x2(t) =   + 

t

1f(s, x (s)) ds


     

 This procedure is called Picard’s method of successive approximation.  

2.4 Solution of Initial Value Problems by Picard method 

Solve the following IVPs by Picard method of successive approximation. 

Example 2.4.1 Consider the IVP 
dx

 = x
dt

, x(0) = 1. 

 Integrating over the interval [0, t], we obtain  

   x(t) = 1 +  

t

0

x(s) ds  

 which is (Volterra) integral equation of 2
nd

 kind.  

 Let 0(t) = 1, then by Picard’s method  

    1(t) = 1 + 

t

0

0

(s) ds  =  1 + 

t

0

1 ds  = 1 + t 

    2(t) = 1 + 

t

1

0

(s) ds  =  1 + 

t

0

(1 ) dss   

    = 1 + t + 
2t

2!
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    3(t) = 1 + 

t

2

0

(s) ds  =  1 + 

t 2

0

s
(1 ) ds

2!
s    

    = 1 + t + 
2t

2!
+

3t

3!
 

 Continuing like this, we obtain  

   n(t) = 1 + t + 
2t

2!
+

3t

3!
+ ……….+ 

nt

n!
 

 Take limit as n    

   
t

nlim (t)    e
n




   

  (t) = e
t
 is the unique solution  of the given IVP, by the Picard’s method of successive 

approximations.  

Example 2.4.2 
dx

dt
 = t

2
 x ,  x(0) = 1 

Sol The corresponding integral equation is  

   x(t) = 1 +  

t

2

0

s  x(s) ds  

 Picard iterates are  

   0(t) = 1,   1(t) = 1 + 

t

2

0

s . 1 ds  = 1 + 
3t

3
  

   2(t) = 1 + 

t 3
2

0

s
s  (1+ ) ds

3  = 1 + 
3t

3
+ 

2
31 t

  
2! 3

 
 
 

 

   3(t) = 1 + 

2t 3 3
2

0

s 1 s
s  1+ +    ds

3 2! 3

  
     

   
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    = 1 + 
3t

3
+ 

2
31 t

  
2! 3

 
 
 

+ 

3
31 t

  
3! 3

 
 
 

 

   ……………………………………………… 

   ………………………………………………. 

   n(t) = 1 + 

t

2

n-1

0

s  (s) ds   

    = 1 + 
3t

3
+ 

2
31 t

  
2! 3

 
 
 

+ ……….. +

n
31 t

  
n! 3

 
 
 

 

 The exact solution is obtained by taking limit n  , i.e. 
nlim (t) 

n



  (t) = 

3t 3e , to which the 

above approximate solution converges.  

Example 2.4.3 
dx

dt
 = t(x - t

2
 + 2) ,  x(0) = 1 

Sol The integral equation, equivalent to the above IVP is  

   x(t) = 1 +  

t

2

0

s [x(s)   + 2]  dss  

 The approximate solutions are 

   0(t) = 1,   1(t) = 1 + 

t

2

0

s (1 - s  + 2) ds  

     = 1 + 

t 2 4
2

0

3t t
s (3 - s ) ds = 1 +  - 

2 4   

   2(t) = 1 + 
t 2 4

2

0

3s s
s 1+  -  - s  + 2 ds

2 4

  
  
  

   
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    = 1 + 

t 2 4

0

s s
s 3 +  -  ds

2 4

 
 
 

  

    = 1 + 
23t

2
+ 

4t

8
 - 

6t

24
 

   3(t) = 1 + 

t 2 4 6

0

s s s
s 3 +  +  - ds

2 8 24

 
 
 

  

    = 1 + 
23t

2
+ 

4t

8
 + 

6t

48
- 

8t

192
,  

 and so on. Thus  

    (t) =  t
2
 +(1 + 

2t

2
+ 

4t

8
 + 

6t

48
+ 

8t

384
 + . . . .  )  

 i.e.   (t) =  
22 t 2t  + e  is exact solution. 

Example 2.4.4 
dx

dt
 = t x  ,   x(0) = 1 

Sol We write f (t, x) = t x and the integral equation corresponding to the initial value problem is  

     x(t) = 1 +  

t

0

t x(t) dt  or  = 1 +  

t

0

s x(s) ds    

 The successive approximations are given by  

   0(t) = 1 

   n(t) = 1 + 

t

n-1

0

t (t) dt      for n = 1, 2, 3,……… 

 Thus   0(t) = 1 

   1(t) = 1 + 

t 2

0

t
1. s ds  1  

2
        
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   2(t) = 1 + 

t 2

0

s
s 1+  ds

2

 
 
 

  = 1 + 

t 3

0

s
 s  +  ds

2

 
 
 

  

    = 1 + 
2t

2
+ 

4t

2 . 4
 

 We shall prove by induction, that  

   n(t) = 1 + 
2t

2
+ 

2
21 t

  
2! 2

 
 
 

+ ……….. +

n
21 t

  
n! 2

 
 
 

    n (A) 

 For n = 0, 1, 2, we have already checked the relation A. Suppose that  

    n-1(t) = 1 + 
2t

2
+ 

2
21 t

  
2! 2

 
 
 

+ ……….. +

n-1
21 t

  
(n-1)! 2

 
 
 

  

 Then   n(t) = 1 + 

2 n-1t 2 2 2

0

s 1 s 1 s
s 1+  +  + ...... +  ds

2 2! 2 (n-1)! 2

      
      
       

  

    = 1 + 

t 3 5 2n-1

2 n-1

0

s 1 s 1 s
 s +  +  + ...... +  ds

2 2! 2 (n-1)! 2

 
 
 

  

    = 1 + 
2 4 6 2n

2 n-1

t t 1 t 1 t
 + +  ...... +  

2 2.4 2! 2 .6 (n-1)! 2 (2n)

 
 
 

  

   n(t) = 1 +  
2t

2

 
 
 

+ 

2
21 t

  
2! 2

 
 
 

+ 

3
21 t

  
3! 2

 
 
 

+ …….. +

n
21 t

  
n! 2

 
 
 

 

 Therefore, by the principle of mathematical induction the equality (A) is true  n = 1, 2, 3, …… 

Moreover, we observe that n(t) is the partial sum of the first       (n + 1) terms of the infinite series 

expansion of the function (t) = 
2t 2e .   

Example 2.4.5 
dx

dt
 = x ,  x(1) = 1 

Sol The given equation is equivalent to the integral equation  
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   x(t) = 1 +  
t

1

x(s)  ds  

 The successive approximations are given by  

   0(t) = 1 

   n+1(t) = 1 + 
t

n

1

(s) ds      for n = 1, 2, 3,……… 

 We find  0(t) = 1 

   1(t) = 1 + 
t

1

ds  t       

   2(t) = 1 +  
t t

1 1

s ds  1 + (s - 1) + 1  ds   

 Here, it is convenient to have integrand occurring in the successive approximations in powers of 

(s – 1) rather than in powers of s (since t0 = 1 and not zero).  

    2(t)  = 1 + 
 

t
2

1

s - 1
s  + 

2

  
 
  

 

    = 1 + (t – 1) + 
2(t - 1)

2!
 

   3(t)  = 1 + 

t 2

1

(s - 1)
 1 + (s - 1) +  ds

2

 
 
 

  

    = 1 + (t – 1) + 
2(t - 1)

2!
+ 

3(t - 1)

3!
 

 By induction, we shall obtain  
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   n(t)  = 1 + (t – 1) + 
2(t - 1)

2!
+ 

3(t - 1)

3!
+ …….. + 

n(t - 1)

n!
 (A) 

 We note that n(t) is the partial sum of the first (n+1) terms of the infinite series expansion of the 

function  

   (t) = t-1e .   

 Moreover, this series converges for all real t. 

    n(t)  (t) = t-1e     t.  

 Hence, the function (t), is the required solution of the given problem.    

Example 2.4.6 Find the first four approximations of the initial value problem 

  x'(t) = 1 + tx, x(0) = 1. 

 Let us find the first approximation as  

   x0(t) = x(0) =1.  

 The second approximation is  

   x1(t) = x0 + 

0

0 0 0

0

f (s, x (s)) ds = x + [1 + s x (s)] ds

t t

t

  . 

 Using the approximation x0(t) = 1, we get  

   x1(t) = x0 + 
2

0

t
(1 + s) ds = 1 + t + 

2

t

 . (1) 

Now   x2(t) = x0 + 

0

1 0 1

0

f (s, x (s)) ds = x + [1 + s x (s)] ds

t t

t

   (2) 

Using the approximation x1(t) in (2), we get  

  x2(t) = 1 + 
2

0

s
1 + s 1 + s + ds

2

t
 
 
 

  
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   =  
2 3 4t t t

1 + t +  +  + 
2 3 8

 

Now   x3(t) = x0 + 

0

2 0 2

0

f (s, x (s)) ds = x + [1 + s x (s)] ds

t t

t

   (3) 

Using the approximation x2(t) in (3), we get 

   x3(t) = 1 + 
2 3 4

0

s s s
1 + s 1 + s +  +  + ds

2 3 8

t   
  

  
  

   =  
2 3 4 5 6t t t t t

1 + t +  +  +  +  + 
2 3 8 15 48

 

Example 2.4.7 Find the first four Picard successive approximations of the initial value problem x'(t) = x 

+ t,  x(0) = 1  and find the n-th approximation xn(t). Find the limit of the sequence xn(t).  

 The given equation is equivalent to the integral equation 

   x(t) = 1 + 
0

(s + x(s)) ds 

t

  

 Let us first define the first approximation x0(t) = x(0) = 1. The successive approximations are 

given by     

   x1(t) = 1 + 
2

0

t
(s + 1) ds = 1 + t + 

2!

t

  

   x2(t) = 1 + 
2

0

s
s + 1 + s +  ds

2!

t
 
 
 
  

    = 1 + t + t
2 

 + 
3t

3!
 

   x3(t) = 1 + 
3

2

0

s
s + 1 + s + s  + ds

3!

t   
  

  
  
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    = 1 + t + 
3 4

2 t t
t  +  + 

3 4!

 
 
 

 

   x4(t) = 1 + 
3 4

2

0

s s
s + 1 + s + s + + ds

3 4!

t   
  

  
  

    =  1 + t + 
3 3 5

2 t t t
t  +  +  + 

3 3.4 5!

 
 
 

 

Proceeding in this manner, we get  

  
2 3 4 n n+1

n

t t t t t
x (t) = 1 + t + 2  +  +  + ....  + 

2! 3! 4! n! (n+1)!

 
 
 

 

Taking the limit as n  , we get 

  
n+1

t

n

t
x (t) = 1 + t + 2 (e  - t - 1), since  0  as n

(n+1)!
   

since 0 < t < 1 

 Hence x(t) = 2e
t
 – t – 1 which can be easily seen to be the exact solution of the given differential 

equation. 

Note 1. If one solves the given linear equation, the Picard successive approximations converge to the 

exact solution of the initial value problem.  

Note 2. In the calculation of the Picard successive approximations, we can take the initial approximation 

other than a constant function also. In general we cannot say that such a sequence of approximation will 

converge to a solution of the initial value problem. 

2.5  Check Your Progress  
 

Q.1      Define a uniformly Lipschitz continuous function. 
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Q.2 Show that the following functions satisfy a Lipschitz condition in the rectangle D defined by 

,x a y b  . 

 (a)             . 

 (b)                      . 

 (c)              . 

Q.3 Show that the function               
    

  
  satisfies Lipschitz condition in       and 

      
 

 
 and find the Lipschitz constant. 

2.6 Summary 

Existence and uniqueness theorem is the tool which makes it possible for us to conclude that there exists 

only one solution to a first order differential equation which satisfies a given initial condition, provided, 

the function in given differential equation satisfies the Lipschitz condition. Also, we present a method 

due to E. Picard, which gives approximate solution curves of a differential equation passing through a 

given point.  

2.7 Keywords  

Existence and Uniqueness, solution, Lipschitz condition, Successive approximations. 

2.8  Self-Assessment Test  
 

 Use the method of successive approximations to find the first three members 1, 2, 3 of a 

sequence of functions that approaches the exact solution of the problem.  

1. ,
dy

xy
dx

  y(0) = 1 2. ,
dy

x y
dx

    y(0) = 1 

3. 2 ,
dy

x y
dx

   y(0) = 0 4.  21 ,
dy

xy
dx

   y(0) = 0 



Ordinary Differential Equations-I  MAL-514 

DDE, GJUS&T, Hisar  59 |  

 

5. 2 ,xdy
e y

dx
   y(0) = 0 6. 2sin ,

dy
x y

dx
   y(0) = 0 

2.9  Answers to check your progress . 
 

Answer 3.  Lipschitz constant is 12.  
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Structure:  
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3.5  Summary  
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3.7  Self-Assessment Test  

3.8  Answers to check your progress  

3.9 References/ Suggested Readings 

 

3.0 Learning Objectives 

In many cases, the existence of solution is guaranteed by the theorems, but no method for obtaining 

those solutions in explicit and closed form is known. The main objective of this chapter is to gain ability 

to solve first order ordinary differential equations by using some approximate methods. 

3.1 Introduction 

 The graphical methods of the preceding section for solving initial value problems are very 

general but they suffer from several serious disadvantages. Not only are they tedious and subject to 

possible errors of construction, but they merely provide us with the approximate graphs of the solutions 

and do not furnish any analytical expression for these solutions. Though we have studied an approximate 

method in the form of Picard’s method in Chapter 2, it involves evaluation of integrals at each step 

which may not be easy in certain cases. The advantage of the methods described in this chapter over the 
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earlier methods, will lie in the fact that in getting the approximate numerical values of the unknown 

functions we shall only require the numerical values of the functions appearing as coefficients in the 

differential equation, apart from mere elementary arithmetical computations. We present some 

approximate methods of solving first order equations.      

3.2 Power Series Methods 

In order to explain the power series methods we shall assume that power series solutions actually 

do exist.  

We consider the initial value problem consisting of the differential equation  

 ( , )
dy

f x y
dx

  (1) 

and  the initial condition   

 y(x0) = y0 (2) 

and assume that the differential equation (1) possesses a solution that is representable as a power series 

in powers of (x – x0). That is, we assume that the differential equation (1) has a solution of the form  

 y = c0 + c1(x – x0) + c2 (x – x0)
2 

 + … =  
0

0

( )n

n

n

c x x




  (3) 

that is valid in some interval about the point x0. We now consider methods of determining the 

coefficients c0, c1, c2,……. in (3) so that the series (3) actually does satisfy the differential equation (1) 

A. The Taylor Series Method 

 We thus assume that the initial value problem consisting of the differential equation (1) and the 

initial condition (2) has a solution of the form (3) that is valid in some interval about x0. Then by 

Taylor’s theorem, for each x in this interval the value y(x) of this solution is given by  

  20
0 0 0 0

''( )
( ) ( ) '( )( ) ( ) ...

2!

y x
y x y x y x x x x x       
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( )

0
0

0

( )
 ( )

!

n
n

n

y x
x x

n





   (4) 

From the initial condition (2) we have  

   y(x0) = y0 

and from the differential equation (1) 

   y '(x0) = f(x0, y0) 

 Substituting these values of y(x0) and y'(x0) into the series in (4) we obtain the first two 

coefficients of the desired series solution (3). Now differentiating the differential equation (1), we obtain  

  
2

2
[ ( , )] ( , ) ( , )x y

d y d dy
f x y f x y f x y

dx dx dx
    

    = ( , ) ( , ) ( , ).x yf x y f x y f x y  (5) 

where we use subscripts to denote partial differentiations. From this we get  

  
0 0 0 0 0 0 0''( ) ( , ) ( , ) ( , )x yy x f x y f x y f x y   

Substituting this value of y''(x0) into (4) we obtain the third coefficient in the series solution (3). 

Proceeding in like manner, we differentiate (5) successively to obtain  

  
3 4

3 4
, ....., .......

n

n

d y d y d y

dx dx dx
 

From these we obtain the values 

  y''' (x0), y
(iv)

 (x0)….., y
(n)

(x0),…. 

 Substituting these values into (4) we obtain the fourth and following coefficients in the series 

solution (3). 

Example 3.2.1 

 Use the Taylor series method to obtain a power series solution of the initial value problem  
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   2 2 ,
dy

x y
dx

   (1) 

     (0) 1y    (2) 

in powers of x.  

 

Solution 

 Since we seek a solution in powers of x, we set x0 = 0 and thus assume a solution of the form 

   2

0 1 2

0

... n

n

n

y c c x c x c x




      

 By Taylor’s theorem, we know that for each x in the interval where this solution is valid  

   
( )

2

0

''(0) (0)
( ) (0) '(0) ...  

2! !

n
n

n

y y
y x y y x x x

n





       (3) 

Using the initial condition (2) in the differential equation (1) we see that  

    y'(0) = 0
2
 + 1

2
 = 1 (4) 

Differentiating (1) successively, we obtain  

   
2

2

d y dy
2x    2y 

dx dx
   (5) 

   

23 2

3 2

d y d y dy
2    2y 2

dx dx dx

 
    

 
 (6) 

   
4 3 2

4 3 2

d y d y dy d y
 2y 6

dx dx dx dx
   (7) 

Substituting  x = 0, y = 1, 1    into  (5), we  obtain
dy

dx
  

   y''(0) = 2(0) + 2(1)(1) = 2. (8) 
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Substituting y = 1, 
2

2
1, 2    into  (6), we  obtain

dy d y

dx dx
   

   y'''(0) = 2+2(1)(2) + 2(1)
2
 = 8. (9) 

Finally, substituting y = 1, 
2 3

2 3
1, 2,  8 into (7), we find that

dy d y d y

dx dx dx
    

    y
(iv)

(0) = (2)(1)(8) + (6)(1)(2) = 28. (10) 

By successive differentiation of (7), we could proceed to determine  

    
5 6

5 6
, ,.......,

d y d y

dx dx
 

and hence obtain  

    y
(v)

(0), y
(vi)

(0),..... 

Substituting the values given by (2), (4), (8), (9) and (10) into (3), we obtain the first five coefficients of 

the desired series solution. We thus find the solution 

    y = 1 + x + 2 3 42 8 28
...

2! 3! 4!
x x x    

     = 1 + x + x
2
 + 3 44 7

...
3 6

x x    

B. The Method of Undetermined Coefficients    

 We consider an alternative method for obtaining the coefficients c0, c1, c2,... in the assumed series 

solution  

   y = c0 + c1(x – x0)  + c2 (x – x0)
2
 + .... = 

0

0

( )n n

n

c x x




    (1) 

of the problem consisting of differential equation  

   ( , )
dy

f x y
dx

   (2) 
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and the initial condition  

   y(x0) = y0 . (3) 

 We shall refer to this alternative method as the method of undetermined coefficients. In order to 

apply it we assume that f(x,y) in the differential equation (2) can be represented in the form  

   f(x,y) = a00 + a10(x - x0) + a01(y-y0) + a20( x - x0)
2 

    
+ a11(x – x0) (y – y0) + a02 (y – y0)

2
+...

 
(4) 

 The coefficients aij in (4) may be found by Taylor’s formula for functions of two variables. Using 

the representation (4) for f(x,y) the differential equation (2) takes the form  

   2

00 10 0 01 0 20 0( ) ( ) ( )
dy

a a x x a y y a x x
dx

        

    +a11(x – x0) (y – y0) + a02 (y – y0)
2
+... (5) 

 Now assuming that the series (1) converges in some interval x – x0 < r (r > 0) about x0, we may 

differentiate (1) term by term and the resulting series will also converge on x – x0 < r  and represent 

y'(x) there. Doing this we thus obtain 

    2

1 2 0 3 02 ( ) 3 ( ) ...
dy

c c x x c x x
dx

       (6) 

 We note that in order for the series (1) to satisfy the initial condition (2) that    y = y0 at x = x0, we 

must have c0 = y0 and hence 

   y – y0 = c1(x – x0) + c2 (x – x0)
2 

+ ... (7) 

 Now substituting (1) and (6) into the differential equation (5), and making use of (7), we obtain 

  c1+2c2 (x - x0) + 3c3 (x – x0)
2
 +  

   = a00 + a10 (x - x0) + a01 [c1 (x - x0) + c2 (x - x0)
2
 + ...] 

    + a20 (x - x0)
2
 + a11 (x - x0) [c1 (x - x0) + c2 (x - x0)

2
 + ...] 

    + a02 [c1 (x - x0) + c2 (x - x0)
2
 + ...]

2 
+ ... (8) 
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 Performing the multiplications and then combining like powers of (x – x0), we see that (8) takes 

the form  

  c1+2c2 (x - x0) + 3c3 (x – x0)
2
 + ……. 

   = a00 + (a10 + a01c1) (x – x0) 

    + (a01c2 + a20 + a11c1 + a02
2

1c (x – x0)
2
 + ... . (9) 

In order that (9) be satisfied for all values of x in the interval x – x0 < r, the coefficients of like powers 

of (x – x0) on both side of (9) must be equal. Equating these coefficients, we obtain 

   c1 = a00,  

   2c2 = a10 + a01c1, 

   3c3 = a01c2 + a20 + a11c1 + a02
2

1c  ,  (10) 

 From the conditions (10) we determine successively the coefficients c1, c2, c3... of the series 

solution (1). From the first condition, we obtain c1 as the known coefficient a00. Then from the second 

condition, we obtain c2 in terms of the known coefficients a10 and a01 and the coefficient c1 just 

determined. Thus we obtain               c2 =  10 01 00

1
( ).

2
a a a  Similarly, we proceed to determine c3, c4.... 

We observe that in general each coefficient cn is thus given in terms of the known coefficients aij in the 

expansion (4) and the previously determined coefficients c1, c2, .....cn-1 . 

 Finally, we substitute the coefficients c0, c1, c2,..... so determined into the series (1) and thereby 

obtain the desired solution. 

Example 3.2.2 

 Use the method of undetermined coefficients to obtain a power series solution of the initial value 

problem. 

    2 2dy
x y

dx
   (1) 
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    y(0) = 1,   (2)  in powers of x 

.  

Solution   

 Since x0 = 0, the assumed solution is of the form  

   y = c0 + c1x  + c2x
2
 + c3x

3
 + ... (3) 

 In order to satisfy the initial condition (2) we must have c0 = 1 and hence the series (3) takes the 

form 

   y = 1 + c1x + c2x
2
 + c3x

3
 + .... (4) 

 Differentiating (4) we obtain  

   2 3

1 2 3 42 3 4 ...
dy

c c x c x c x
dx

      (5) 

 For the differential equation (1) we have f(x, y) = x
2
 + y

2
. Since x0 = 0 and y0 = 1, we must 

expand x
2
 + y

2
 in the form 

     
, 0

( 1) .i j

ij

i j

a x y




  

Since     y
2
 =  (y -1)

2
 +2 (y – 1) + 1, 

the desired expansion is given by  

   x
2
 + y

2
 = 1 + 2 (y – 1) + x

2
 + (y – 1)

2
. 

Thus the differential equation (1) takes the form  

   2 21 2( 1) ( 1)
dy

y x y
dx

      . (6) 

Now substituting (4) and (5) into the differential equation (6), we obtain  

   c1 + 2c2 x + 3c3x
2
 + 4c4x

3
 + ....  
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     = 1 + 2 (c1x + c2x
2
 + c3x

3
 + ...) + x

2
 + (c1x + c2x

2
 + ...)

2
.
 

(7)  

Collecting like powers of x in the right hand side of (7), it takes the form  

 c1 + 2c2x + 3c3x
2
 + 4c4x

3
  

     = 1 + 2c1x + (2c2 + 1 + 2

1c ) x
2
 + (2c3 + 2c1c2)x

3
+... (8) 

Equating the coefficients of the like powers of x in (8), we obtain the conditions 

       c1 = 1 

       2c2 = 2c1 

       3c3 = 2c2 + 1 + 2

1c , 

       4c4 = 2c3 + 2c1c2, (9) 

From the conditions (9) we obtain successively  

       c1 = 1 

       c2 =  c1 = 1, 

       2

3 2 1

1 4
(2 1 ) ,

3 3
c c c        

    
4 3 1 2

1 1 14 7
(2 2 )

4 4 3 6
c c c c

 
    

 
 (10) 

Substituting these coefficients into the series (4), we obtain the first five terms of the desired series 

solution. We thus find  

      y = 1 + x + x
2
 + 3 44 7

...
3 6

x x   

We note that this is of course the same series previously obtained by the Taylor series method. 

3.3 Numerical Methods  

Introduction 
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 In this section we introduce certain basic numerical methods for approximating the solution of 

the initial value problem consisting of the differential equation.  

     ( , )
dy

f x y
dx

     (1) 

and the initial condition  

     y(x0) = y0 .    (2) 

 Numerical methods employ the differential equation (1) and the condition (2) to obtain 

approximations to the values of the solution corresponding to various, selected values of x. To be more 

specific, let y denote the solution of the problem and let h denote a positive increment in x. The initial 

condition tells us that y = y0 at x = x0. A numerical method will employ the differential equation (1) and 

the condition (2) to approximate successively the values of y at x1 = x0 + h, x2 = x1 + h, x3 = x2 + h, .... 

A. The Euler Method 

 The Euler method is very simple but not very practical. Let y denote the exact solution of the 

initial value problem that consists of the differential equation.  

     ( , )
dy

f x y
dx

     (1) 

and the initial condition   y(x0) = y0.    (2) 

 Let h denotes a positive increment in x and let x1 = x0 + h. Then 

   
1 1

0 0

1 0( , )  = ( ) ( ) 

x x

x x

dy
f x y dx dx y x y x

dx
   . 

 Since y0 denotes the value y(x0) of the exact solution y at x0, we have 

   y(x1) = y0 + 
1

0

( , )

x

x

f x y dx .   (3) 

 If we assume that f(x, y) varies slowly on the interval x0  x  x1, then we can approximate f(x, y) 

in (3) by its value f(x0, y0) at the left endpoint x0. Then  
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1

0

1 0 0 0( ) ( , )

x

x

y x y f x y dx            

But   
1

0

0 0 0 0 1 0 0 0( , ) ( , )( ) ( , ).

x

x

f x y dx f x y x x hf x y    

Thus    1 0 0 0( ) ( , ).y x y hf x y   

Thus we obtain the approximate value y1 of y at x1 = x0 + h by the formula 

     y1 = y0 + hf (x0, y0).   (4) 

 Having obtained y1, we proceed in like manner to obtain y2 by the formula        y2 = y1 + hf(x1, 

y1), y3 by the formula y3 = y2 + hf(x2, y2), and so forth. In general we find yn+1 in terms of yn by the 

formula  

     yn+1 = yn + hf(xn, yn).   (5) 

 The graph of the exact solution y is a curve C in the xy plane (see figure) Let P denotes the initial 

point (x0, y0) and let T be the tangent to C at P. Let Q be the point at which the line x = x1 intersects C 

and let N be the point at which this line intersects T. Then the exact value of y at x1 is represented by 

LQ. The approximate value y1 is represented by LN, since LN = LM + MN = y0 + PM tan = y0 + hf(x0, 

y0). The error in approximating the exact value of y at x1 by y1 is thus represented by NQ. The figure 

suggests that if h is sufficiently small, then this error NQ will also be small and hence the approximation 

will be good.  
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   Figure 

 But if the increment h is very small, then the computations will be more lengthy and so the 

method will involve tedious and time consuming labour. Thus, this method is not very practical.  

Example 3.3.1 

Apply the Euler method to the initial value problem  

     = 2
dy

x y
dx

        (1) 

    y(0) = 1         (2) 

 Employ the method to approximate the value of the solution y at x = 0.2, 0.4, 0.6, 0.8, and 1.0 

using (1) h = 0.2, and (2) h = 0.1. Obtain results to three figures after the decimal point. Compare with 

the exact value obtained.  
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Solution  We have f (x,y) = 2x + y and h = 0.2. From initial condition (2), we have x0 = 0, y0 = 1. 

We now proceed with the calculations. 

(a) x1 = x0 + h = 0.2,  f(x0, y0) = f(0, 1) = 1.000,   

 y1 = y0 + hf(x0, y0) = 1.000 + 0.2 (1.000) = 1.200 

(b) x2 = x1 + h = 0.4,  f(x1, y1) = f(0.2, 1.200) = 1.600, 

 y2 = y1 + hf(x1, y1) = 1.200 + 0.2 (1.600) = 1.520. 

(c) x3 = x2 + h = 0.6,  f(x2, y2) = f(0.4, 1.520) = 2.320, 

 y3 = y2 + hf(x2, y2) = 1.520 + 0.2 (2.320) = 1.984. 

(d) x4 = x3 + h = 0.8,  f(x3, y3) = f(0.6, 1.984) = 3.184, 

 y4 = y3 + hf(x3, y3) = 1.984 + 0.2 (3.184) = 2.621. 

(e) x5 = x4 + h = 1.0,  f(x4, y4) = f(0.8, 2.621) = 4.221, 

 y5 = y4 + hf(x4, y4) = 2.621 + 0.2 (4.221) = 3.465. 

 These results, corresponding to the various values of xn, are collected in the second column of 

Table 1. 

Table 1 

xn yn 

using h = 0.2 

yn 

using h = 0.1 

y 

0.0 1.000 1.000 1.000 

0.1 - 1.100 1.116 

0.2 1.200 1.230 1.264 

0.3 - 1.393 1.450 

0.4 1.520 1.592 1.675 

0.5 - 1.831 1.946 

0.6 1.984 2.114 2.266 

0.7 - 2.445 2.641 



Ordinary Differential Equations-I  MAL-514 

DDE, GJUS&T, Hisar  73 |  

 

0.8 2.621 2.830 3.076 

0.9 - 3.273 3.579 

1.0 3.465 3.780 4.155 

 

2. In this case we have f(x, y) = 2x + y and h = 0.1. Again we have x0 = 0, y0 = 1. The calculations 

are as follows:  

(a) x1 = x0 + h = 0.1,  f(x0, y0) = f(0, 1) = 1.000,   

 y1 = y0 + hf(x0, y0) = 1.000 + 0.1 (1.000) = 1.100 

 (b) x2 = x1 + h = 0.2,  f(x1, y1) = f(0.1, 1.100) = 1.300, 

 y2 = y1 + hf(x1, y1) = 1.100 + 0.1 (1.300) = 1.230. 

(c) x3 = x2 + h = 0.3,  f(x2, y2) = f(0.2, 1.230) = 1.630, 

 y3 = y2 + hf(x2, y2) = 1.230 + 0.1 (1.630) = 1.393. 

(d) x4 = x3 + h = 0.4,  f(x3, y3) = f(0.3, 1.393) = 1.993, 

 y4 = y3 + hf(x3, y3) = 1.393 + 0.1 (1.993) = 1.592. 

(e) x5 = x4 + h = 0.5,  f(x4, y4) = f(0.4, 1.592) = 2.392, 

 y5 = y4 + hf(x4, y4) = 1.592+ 0.1 (2.392) = 1.831. 

(f) x6 = x5 + h = 0.6,  f(x5, y5) = f(0.5, 1.831) = 2.831, 

 y6 = y5 + hf(x5, y5) = 1.831 + 0.1 (2.831) = 2.114. 

(g) x7 = x6 + h = 0.7,  f(x6, y6) = f(0.6, 2.114) = 3.314, 

 y7 = y6 + hf(x6, y6) = 2.114+ 0.1 (3.314) = 2.445. 

(h) x8 = x7 + h = 0.8,  f(x7, y7) = f(0.7, 2.445) = 3.845, 

 y8 = y7 + hf(x7, y7) = 2.445 + 0.1 (3.845) = 2.830. 

(i) x9 = x8 + h = 0.9,  f(x8, y8) = f(0.8, 2.830) = 4.430, 

 y9 = y8 + hf(x8, y8) = 2.830 + 0.1 (4.430) = 3.273. 
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(j) x10 = x9 + h = 1.0,  f(x9, y9) = f(0.9, 3.273) = 5.073, 

 y10 = y9 + hf(x9, y9) = 3.273 + 0.1 (5.073) = 3.780. 

 These results are collected in the third column of Table 1. The values of the exact solution y, 

computed to three figures after the decimal point, are listed in the fourth column of Table 1. From this 

table we compute the errors involved in both approximations at x = 0.2, 0.4, 0.6, 0.8, and 1.0. These 

errors are tabulated in Table 2.  

 A study of these tables illustrates two important facts concerning the Euler method. First, for a 

fixed value of h, the error becomes greater and greater as we proceed over a larger and larger range away 

from the initial point. Second, for a fixed value of xn, the error is smaller if the value of h is smaller.  

Table 2 

xn 
Error using    

h = 0.2 

Error using     

h = 0.1 

0.2 0.064 0.034 

0.4 0.155 0.083 

0.6 0.282 0.152 

0.8 0.455 0.246 

1.0 0.690 0.375 

   

B. The Modified Euler Method   

 In Section A we observed that the value y(x1) of the exact solution y of the initial value problem 

     ( , ),
dy

f x y
dx

     (1) 

     y(x0) = y0,    (2) 

at x1 = x0 + h is given by  

  y(x1) = y0 + 
1

0

( , ) .
x

x
f x y dx     (3) 
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 In the Euler method we approximated f(x, y) in (3) by its value f(x0, y0) at the left endpoint of the 

interval x0  x  x1 and obtained the approximation 

   y1 = y0 + hf(x0, y0)      (4) 

for y at x1. It seems that a more accurate value would be obtained if we were to approximate f(x, y) by 

the average of its values at the left and right endpoints of           x0  x  x1, instead of simply by its value 

at the left endpoint x0. This is essentially what is done in the modified Euler method. In order to 

approximate f(x, y) by the average of its values at x0 and x1, we need to know its value f[x1, y(x1)] of y at 

x1. We must find a first approximation (1)

1y  for y(x1), and to find this, we take  

   (1)

1y  = y0 + hf (x0, y0)    (5) 

as the first approximation to the value of y at x1. Then we approximate f[x1, y(x1)] by f(x1, 
(1)

1y ), using 

the value (1)

1y  found by (5). From this we obtain. 

  
(1)

0 0 1 1( , ) ( , )

2

f x y f x y
      (6) 

which is approximately the average of the values of f(x, y) at the endpoints x0 and x1. We now replace 

f(x, y) in (3) by (6) and thereby obtain 

  
(1)

(2) 0 0 1 1
1 0

( , ) ( , )

2

f x y f x y
y y h


     (7) 

as the second approximation to the value of y at x1. 

 We now use the second approximation (2)

1y  to obtain a second approximation (2)

1 1( ,  )f x y for the 

value of f (x, y) at x1. From this we obtain  

  
(2)

(3) 0 0 1 1
1 0

( , ) ( , )

2

f x y f x y
y y h


     (8) 

as the third approximation of the value of y at x1. Proceeding in this way we obtain a sequence of 

approximations 

   (1) (2) (3)

1 1 1, , ,.....y y y  
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to the value of the exact solution y at x1. We proceed to compute the successive terms of the sequence 

until we obtain two consecutive members that have the same value to the number of decimal places 

required. Let that value of the solution y at x1 be denoted by y1. We now proceed to approximate y at x2 

= x1 + h, in exactly the same way as we did in finding y1. We find successively  

   (1)

2 1 1 1( , ),y y hf x y      

   
(1)

(2) 1 1 2 2
2 1

( , ) ( , )
,

2

f x y f x y
y y h


   

   
(2)

(3) 1 1 2 2
2 1

( , ) ( , )
,

2

f x y f x y
y y h


    (9) 

   ….. ….. ….. ….. …..   

 until two consecutive members of this sequence agree, thereby obtaining an approximation y2 to the 

value of y at x2. 

 Proceeding further in like manner one obtains an approximation y3 to the value of y at x3, and so 

forth.  

Example 3.3.2 

 Apply the modified Euler method to the initial value problem  

    2 ,
dy

x y
dx

      (1) 

      y(0) = 1.    (2) 

 Employ the method to approximate the value of the solution y at x = 0.2 and   x = 0.4 using h = 

0.2. Obtain results to three figures after the decimal point. Compare with the results obtained using the 

basic Euler method with h = 0.1 and with the exact values.  

Solution 
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 Here f(x, y) = 2x + y, x0 = 0, and y0 = 1, and we are to use h = 0.2. We begin by approximating 

the value of y at x1 = x0 + h = 0.2. A first approximation (1)

1y  is found using Euler Method. Since f(x0, y0) 

= f(0, 1) = 1.000, we have  

   (1)

1 0 0 0( , ) 1.000 0.2(1.000) 1.200.y y hf x y      

 We now use modified Euler method to find a second approximation (2)

1y  to the desired value. 

Since (1)

1 1( ,  ) (0.2,1.200) 1.600,f x y f  we have  

 
(1)

(2) 0 0 1 1
1 0

( , ) ( , ) 1.000 1.600
1.000 (0.2) 1.260

2 2

f x y f x y
y y h

 
      

 We next find a third approximation (3)

1y . Since  

  (2)

1 1( ,  ) (0.2,1.260) 1.660,f x y f   we find  

  
(2)

(3) 0 0 1 1
1 0

( , ) ( , ) 1.000 1.660
1.000 (0.2) 1.266.

2 2

f x y f x y
y y h

 
      

Similarly, we find 

 
(3)

(4) 0 0 1 1
1 0

( , ) ( , ) 1.000 1.666
1.000 (0.2) 1.267

2 2

f x y f x y
y y h

 
       

and  

 
(4)

(5) 0 0 1 1
1 0

( , ) ( , ) 1.000 1.667
 1.000 (0.2) 1.267.

2 2

f x y f x y
y y h

 
      

 Since the approximations (4) (5)

1 1  and  y y  are the same to the number of decimal places required, we 

take their common value as the approximation y1 to the value of the solution y at x1 = 0.2. That is, we 

take 

    y1 = 1.267    (3) 

 We now proceed to approximate the value of y at x2 = x1 + h = 0.4. We find successively 
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  (1)

2 1 1 1 ( , ) 1.267 0.2(1.667) 1.600y y hf x y      

  
(1)

(2) 1 1 2 2
2 1

( , ) ( , ) 1.667 2.400
1.267 (0.2) 1.674.

2 2

f x y f x y
y y h

 
      

  
(2)

(3) 1 1 2 2
2 1

( , ) ( , ) 1.667 2.474
1.267 (0.2) 1.681.

2 2

f x y f x y
y y h

 
      

  
(3)

(4) 1 1 2 2
2 1

( , ) ( , ) 1.667 2.481
1.267 (0.2) 1.682.

2 2

f x y f x y
y y h

 
      

  
(4)

(5) 1 1 2 2
2 1

( , ) ( , ) 1.667 2.482
1.267 (0.2) 1.682.

2 2

f x y f x y
y y h

 
      

 Since the approximations (4) (5)

2 2   and  y y  are both the same to the required number of decimal 

places, we take their common values as the approximation y2 to the value of the solution y at x2 = 0.4. 

That is, we take     

     y2 = 1.682     (4) 

 We compare the results (3) and (4) with those obtained using the basic Euler method with h = 0.1 

and with the exact values. For this purpose the various results and the corresponding errors are listed in 

Table 3. 

 The principal advantage of the modified Euler method over the basic Euler method is 

immediately apparent from a study of Table 3. 

Table 3 

xn Exact value of y (to 

three decimal places) 

Using basic Euler 

method with h = 0.1 

Using modified Euler 

with h = 0.2 

  Approximation Approximation  

  yn Error yn Error 

0.2 1.264 1.230 0.034 1.267 0.003 
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0.4 1.675 1.592 0.083 1.682 0.007 

    

C. The Runge-Kutta Method  

 We now consider the Runge-Kutta method for approximating the values of the solution of the 

initial value problem. 

    ( , ) 
dy

f x y
dx

      (1) 

    y(x0) = y0       (2) 

at x1 = x0 + h, x2 = x1 + h, and so forth. This method gives accurate results without the need of using 

extremely small values of the interval h.  

 To approximate the value of the solution of the initial value problem under consideration at x1 = 

x0 + h by the Runge-Kutta method, we calculate successively the coefficients k1, k2, k3, k4, and K0 

defined by the formulas  

     k1 = hf(x0, y0),  

     1
2 0 0,

2 2

kh
k hf x y

 
   

 
, 

      2
3 0 0,

2 2

kh
k hf x y

 
   

 
,  (3) 

     4 0 0 3( , ),k hf x h y k    

and      0 1 2 3 4

1
( 2 2 )

6
K k k k k    . 

Then we set     y1 = y0 + K0    (4) 

and take this as the approximate value of the exact solution at x1 = x0 + h. 
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 We proceed to approximate the value of the solution at x2 = x1 + h in an exactly similar manner. 

Using x1 = x0 + h and y1 as determined by (4), we calculate successively the coefficients k1, k2, k3, k4 and 

K1 defined by    

   

     k1 = hf(x1, y1),  

     1
2 1 1,

2 2

kh
k hf x y

 
   

 
, 

      2
3 1 1,

2 2

kh
k hf x y

 
   

 
,  (5) 

     4 1 1 3( , ),k hf x h y k    

and      1 1 2 3 4

1
( 2 2 )

6
K k k k k    . 

Then we set     y2 = y1 + K1    (6) 

and take this as the approximate value of the exact solution at x2 = x1 + h. 

 

 Similarly, we proceed to approximate the value of the solution at x3 = x2 + h, x4 = x3 + h, and so 

forth. Let yn denotes the approximate value obtained for the solution at xn = x0 + nh, we calculate 

successively k1, k2, k3, k4, and Kn defined by   

     k1 = hf(xn, yn),  

     1
2 ,

2 2
n n

kh
k hf x y

 
   

 
, 

      2
3 ,

2 2
n n

kh
k hf x y

 
   

 
,     

  4 3( , ),n nk hf x h y k    
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and      1 2 3 4

1
( 2 2 )

6
nK k k k k    . 

Then we set     yn+1 = yn + Kn  

and take this as the approximate value of the exact solution at xn+1  = xn + h. 

 

Example 3.3.3 

Apply the Runge-Kutta method to the initial value problem  

     2  
dy

x y
dx

      (1)   

  y(0) = 1    (2) 

Employ the method to approximate the value of the solution y at x = 0.2 and x = 0.4 using h = 0.2. Carry 

the intermediate calculations in each step to five figures after the decimal point, and round off the final 

results of each step to four such places. Compare with the exact value.  

Solution 

 Here f(x, y) = 2x + y, x0 = 0, y0 = 1, and we are to use h = 0.2. Using these quantities we calculate 

successively k1, k2, k3, k4, and K0. We first find 

     k1 = hf(x0, y0) = 0.2 f(0, 1) = 0.2(1) = 0.20000 

Then since  

    0

1
0 (0.2) 0.1

2 2

h
x      

and     1
0

1
1.00000 (0.20000) 1.10000,

2 2

k
y      

we find    1
2 0 0, 0.2 (0.1,  1.10000)

2 2

kh
k hf x y f

 
    

 
 

     = 0.2 (1.30000) = 0.26000. 
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Next, since 

    2
0

1
1.00000 (0.26000) 1.13000,

2 2

k
y      

we find  

    2
3 0 0, 0.2 (0.1,  1.13000)

2 2

kh
k hf x y f

 
    

 
 

     = 0.2(1.33000) = 0.26600. 

Since x0 + h = 0.2 and y0 + k3 = 1.00000 + 0.26600 = 1.26600, we obtain  

     k4 = hf(x0 + h, y0 + k3) = 0.2f (0.2, 1.26600)  

      = 0.2 (1.66600) = 0.33320. 

Finally, we find  

 0 1 2 3 4

1 1
( 2 2 ) (0.20000 0.52000 0.53200 0.33320)

6 6
K k k k k         

   = 0.26420. 

Then the approximate value of the solution at x1 = 0.2 is  

   y1 = 1 + 0.2642 = 1.2642    (3) 

Now using y1 as given by (3), we calculate successively k1, k2, k3, k4, and K1. We first find  

  k1  = hf(x1, y1) = 0.2f(0.2, 1.2642) = 0.2 (1.6642) = 0.33284 

Then since   1

1
0.2 (0.2) 0.3

2 2

h
x          

and    1
1

1
1.26420 (0.33284) 1.43062

2 2

k
y      

we find  

    1
2 1 1, 0.2 (0.3,  1.43062)

2 2

kh
k hf x y f

 
    

 
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   = 0.2(2.03062) = 0.40612 

Next, since  

  2
1

1
1.26420 (0.40612) 1.46726

2 2

k
y      

we find  

  2
3 1 1,   0.2 (0.3,  1.46726)

2 2

kh
k hf x y f

 
    

 
 

   = 0.2(2.06726) = 0.41345 

Since x1 + h = 0.4 and y1 + k3 = 1.26420 + 0.41345 = 1.67765, we obtain 

  k4 = hf(x1 + h, y1 + k3) = 0.2f (0.4, 1.67765) 

    = 0.2 (2.47765) = 0.49553 

Finally, we find  

  1 1 2 3 4

1
( 2 2 )

6
K k k k k     

  
1

(0.33284 0.81224 0.82690 0.49553) 0.41125
6

     . 

Then, the approximate value of the solution at x2 = 0.4 is  

   y2 = 1.2642 + 0.4112 = 1.6754   (4) 

 Rounded off to four places after the decimal point, the exact values at x = 0.2 and x = 0.4 are 

1.2642 and 1.6754, respectively. The approximate value at x = 0.2 as given by (3) is therefore correct to 

four places after the decimal point and the approximate value at x = 0.4 as given by (4) is likewise 

correct to four place.  

 The remarkable accuracy of the Runge-Kutta method in this problem is certainly apparent. In 

fact, we employ the method to approximate the solution at            x = 0.4 using h = 0.4 (that is, in only 

one step), we obtain the value 1.6752, which differs from the exact value 1.6754 by merely 0.0002. 
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3.4     Check Your Progress  
 

Q 1. Consider the initial value problem  

     2
dy

x y
dx

  ,  y(0) = 1. 

 (a) Apply the Euler method to approximate the values of the solution y at x = 0.1, 0.2, 0.3, 

and 0.4, using h = 0.1. Obtain results to three figures after the decimal point. 

 (b) Proceed as in part(a) using h = 0.05 

 (c) Find the exact solution of the problem and determine its values at            x = 0.1. 0.2, 0.3 

and 0.4 (to three figures after the decimal point).  

 (d) Compare the results obtained in parts (a), (b), and (c). Tabulate errors as in table 2. 

 

Q 2. Consider the initial-value problem  

     3 2 ,             y(0) 1
dy

x y
dx

   . 

(a) Apply the modified Euler method to approximate the values of the solution y at x = 0.1, 0.2 and 

0.3 using h = 0.1. Obtain results to three figures after the decimal point. 

(b) Proceed as in part (a) using h = 0.05 

(c) Find the exact solution of the problem and determine its value at x = 0.1, 0.2 and 0.3 (to three 

figures after the decimal point). 

(d) Compare the results obtained in parts (a), (b) and (c) and the tabulate errors.  

Q 3. Consider the initial value problem  

    2 2 ,
dy

x y
dx

      y(0) 1  

(a) Apply the modified Euler method to approximate the values of the solution y at x = 0.1, 0.2 and 

0.3 using h = 0.1. Obtain results to three figures after the decimal point. 
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(b) Apply the Euler method to approximate the values of the solution y at x = 0.1, 0.2 and 0.3 using h 

= 0.1. Obtain results to three figures after the decimal point. 

(c) Compare the results obtained in parts (a) and (b) and the tabulate errors.   

Q 4. Consider the initial value problem  

     3 2 ,  
dy

x y
dx

         

  y(0) = 1 

(a) Apply the Runge-Kutta method to approximate the values of the solution y at x = 0.1, 0.2 and 0.3 

using h = 0.1. Carry the intermediate calculations in each step to five figures after the decimal 

point and round off the final results of each step to four such places.  

 (c) Find the exact solution of the problem and compare the results obtained in part(a) with the exact 

values. 

Q 5. Proceed as in part (a) of Exercise 4 for initial value problem  

     2 2 ,  y(0)=1.
dy

x y
dx

    

3.5 Summary 

In this chapter several more approximate methods, namely, power series method, Taylor Series 

method, method of undetermined coefficients, Euler method and Runge-Kutta method, for the solution 

of arbitrary first order ordinary differential equations are considered. In the study of each method in this 

chapter, the primary concern is to obtain familiarity with the procedure itself and to develop skill in 

applying it.  

3.6 Keywords  

Approximate methods, Taylor Series, Undetermined coefficients, Euler method, Runge-Kutta 

method.  
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3.7   Self-Assessment Test  
 

Obtain a power series solution in power of x of each of the initial value problems in questions 1-5 by (a) 

the Taylor series method and (b) the method of undetermined coefficients. 

 1. ,
dy

x y
dx

   y(0) = 1 2. 2 22 ,
dy

x y
dx

    y(0) = 4 

3. 21 ,
dy

xy
dx

   y(0) = 2 4.  3 3,
dy

x y
dx

   y(0) = 3 

5. sin ,
dy

x y
dx

   y(0) = 0 

Obtain a power series solution in powers of x – 1 of each of the initial value problems in questions 6-9 

by (a) the Taylor series method and (b) method of undetermined coefficients. 

6.  2 2 ,
dy

x y
dx

   y(1) = 4 7. 3 2 ,
dy

x y
dx

   y(1) = 1 

8. 2 ,
dy

x y y
dx

     y(1) = 1 9. cos ,
dy

x y
dx

   y(1) =  

3.8   Answers to check your progress  
 

1. (a)0.800,  0.650,  0.540, 0.462  (b) 0.812,  0.670,  0.564,  0.488  (c) 0.823,  0.688,  0.586,  0.512. 

2. (a)  1.239,  1.564, 1.995  (b) 1.238,  1.562,  1.991  (c)  1.237, 1.561,  1.989 

3.       (a)  1.112,  1.255,  1.445.  (b)  1.100,  1.222,  1.375. 

4. (a)  1.2374,  1.5606,  1.9886  (b)  1.2374,  1.5606,  1.9887- 

5.   1.1115,  1.2531,  1.43 
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4.0  Learning Objectives  

The main objective of this chapter is to find out the maximal interval of existence of solution of initial 

value problems. Equal emphasis is on the study of dependence of solution on initial conditions and 

functions of IVP. 



Ordinary Differential Equations-I  MAL-514 

DDE, GJUS&T, Hisar  89 |  

 

4.1 Introduction  

In the Picard’s theorem, we obtained the solution of the initial value problem near the initial point 

(x0, y0) in a closed rectangle R contained in the domain D and the interval of convergence was 

determined by h = min 
b

a, ,
M

 
 
 

 where f(x, y)  M on R. We obtained the best possible h determined 

by the closed rectangle R as a part of the domain and we obtained the solution on (x0 – h, x0) on the left 

side and (x0, x0 + h) on the right side unmindful of points outside the rectangle. Hence the question arises 

whether the solution exists outside the best possible interval, the answer is yes and is explained in the 

first three theorems of this chapter. The fact that we are using initial conditions to construct Picard 

successive approximations shows that the solutions are functions of the initial conditions. Thus, it is 

evident that we get different solutions of same equations for different initial conditions. Also, we shall 

obtain the relation between two initial value problems of two different functions and this will explain 

how the solutions change when the functions are slightly changed. This chapter also extends the theory 

to a system of equations, which give rise to the study of matrix differential equation. The existence and 

uniqueness of solutions of the initial value problem of such a vector differential equation will be studied. 

4.2 Continuation of Solution on an IVP 

Theorem 4.2.1 The largest open interval over which the solution y(x) with y(x0) = y0 is defined is any 

one of the following two types.  

(i) (a, b) where both a and b are finite or either a is finite or b is finite.  

(ii) The entire x-axis in the sense -  < x < .  

Proof. 

 Suppose that f satisfies the hypothesis of Picard theorem in D and that         (x0, y0)  D. Let R:x- 

x0)  a, y – y0  b be a rectangle lying in D which gives rise to the “best possible” h of the conclusion 

of Picard theorem. The Picard theorem asserts that the initial value problem.  
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  ( , )
dy

f x y
dx

   

  y(x0) = y0 (1) 

possesses a unique solution 0 on x – x0  h, but nothing is implied about 0 outside this interval. Now 

let us consider the extreme right hand point for which 0 is defined. This is the point (x1, y1), where x1 = 

x0 + h, y1 = 0(x1). Since this point is a point of R, it is certainly a point of the domain D in which the 

hypotheses of Picard Theorem are satisfied. Thus we can reapply Picard Theorem at the point (x1, y1) 

and can prove that the differential equation dy/dx = f(x, y) possesses a unique solution 1 such that 1(x1) 

= y1, which is defined on some interval x1  x  x1 + h1, where h1 > 0. 

Now let us define  as follows: 

   
0 0 0 1

1 1 1 1

( ),    ,
( )

( ),    

x x h x x h x
x

x x x x h






    
 

  
   

We now assert that  is a solution of problem (1) on the extended interval 0 1 1x h x x h    (see 

Figure). The function  is continuous on this interval and is such that (x0) = y0. For 0 0x h x x h     

we have  

   
0

0 0 0( ) [ , ( )]
x

x
x y f t t dt      
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Figure 

and hence  

   
0

0( ) [ , ( )]
x

x
x y f t t dt     (2) 

on this interval. On the interval 0 1 1x h x x h    , we have  

   
1

1 1 1( ) [ , ( )]
x

x
x y f t t dt    ,  

or    
1

1( ) [ , ( )]
x

x
x y f t t dt    . 

Since y1 = 0(x1) = y0 + 
1

0

[ , ( )]
x

x
f t t dt , we thus have  

   
0

0( ) [ , ( )]
x

x
x y f t t dt     (3) 

on the interval 0 1 1x h x x h    . Thus, combining the results of (2) and (3) we see that  satisfies the 

integral equation (3) on the extended interval 0 1 1x h x x h    . Since  is continuous on this interval, 

so is f [x,(x)]. Thus,  

   
( )

[ , ( )]
d x

f x x
dx


   

on [ 0 1 1,   x h x h  ]. Therefore  is a solution of problem (1) on this larger interval. 

 The function  so defined is called a continuation of the solution 0 to the interval   [x0 – h , x1 + 

h1]. If we now apply Picard Theorem again at the point            [x1+h1, (x1 + h1)], we may thus obtain the 

continuation over the still larger interval  x0 – h  x  x2 + h2 where x2 = x1 + h1 and h2 is positive. 

Repeating this process further, we may continue the solution over successively larger intervals x0 – h  x 

 xn + hn extending farther and farther to the right of x0 + h. Also, in like manner, it may be continued 

over successively larger intervals extending farther and farther to the left of x0 – h. 
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 Thus repeating the process indefinitely on both the left and the right, we extend the solution to 

successively larger intervals [an, bn], where 

  [x0 – h, x0 + h] = [a0, b0]  [a1, b1]  [a2, b2]   [ , ]n na b    

Let a = lim      limn n
n n

a and b b
 

 , where the limit exists finitely or infinitely.  

 We thus obtain a largest open interval a< x <b over which the solution  such that (x0) = y0 may 

be defined. It is clear that two cases are possible. 

1. a = -  and  b = + , in which case  is defined for all x, - < x < + . 

2. Either a is finite or b is finite or both. 

This completes the proof of theorem.  

 We can be more definite concerning the largest open interval over which the solution of this 

initial-value problem is defined. In this connection we state the following theorem.     

Theorem 4.2.2 Hypothesis  

1. Let f be continuous in the unbounded domain D: a< x < b, -  < y < + .  

2. Let f satisfies a Lipschitz condition (with respect to y) in this unbounded domain. That is, assume 

there exists k > 0 such that   

    f(x, y1) – f(x, y2)  k y1 – y2 

for all (x, y1), (x, y2)  D.  

Conclusion A solution  of dy/dx = f(x, y) such that (x0) = y0, where (x0, y0) is any point of D, is 

defined on the entire open interval a < x < b. In particular, if a = -  and b = + , then  is defined for all 

x, -  < x < + . 

Example 4.2.3 Consider the IVP  

   2 ,
dy

y
dx

  
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   y (-1) = 1. 

 It has a solution (x) = 
1

x


 through the point (-1, 1) and this solution exists on the interval [-1, 

0] but cannot be continued further to the right. Because, in that case  does not stay within the region D, 

where f(x, y) = y
2 

 is bounded. 

4.3 Maximal Interval of Existence  

 Let f(x, y) be a continuous function on a (x, y)- set E. Let  = (x) be a solution of the 

differential equation 

   ( , )
dy

f x y
dx

   (1) 

on an interval I.  

 The interval I is called a right maximal interval of existence for  if there does not exist an 

extension of (x) over an interval, say I1, so that  = (x) remains a solution of (1), where I is a proper 

subset of I1 and I, I1 have different right end points. Similarly, a left maximal interval of existence for  

can be defined.  

Definition 4.3.1 A maximal interval of existence of a solution of ODE (1) is an interval which is both 

left and right maximal interval. 

Theorem 4.3.2 Extension Theorem 

    Let f (x, y) be continuous on an open (x, y) - set E and let y(x) be a solution of differential 

equation   

   ( , )
dy

f x y
dx

    (1) 

on some interval. Then y(x) can be extended as a solution over a maximal interval of existence (- , +). 

Also if (- , +) is a maximal interval of existence, then y(x) tends to the boundary E of E as x  -  or 

x  +. 
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Proof Let E1, E2, …….En be open subsets of the given set E such that E = n
n

 E   and let 
1 2 nE ,  E ,.......E

be the closures of these open sets. Then 
1 2 nE ,  E ,.......E are compact subsets of E and let us choose 

nE s.t. 

n n+1E E . By Cauchy Peano Existence theorem, if (x0, y0) is any point of 
nE , there exists an n > 0 such 

that all solutions of given differential equation through (x0, y0) exist on the interval |x – x0|   n . 

 Now consider a given solution y = y(x) of differential equation (1) on an open interval J. If J is 

the right maximal interval of existence, then nothing to prove. If J is not the right maximal interval of 

existence, then by the theorem on continuation of solution, this solution y(x) can be extended to an 

interval such that interval contains the right end point of interval J. Thus in proving the existence of a 

right maximal interval of existence, it can be supposed that y(x) is defined on a closed interval       [a, 

b0].  

 Let us denote n(1) be the integer so large that (b0, y(b0))  n(1)E . Then y(x) can be extended over 

an interval [b0, b0 + n(1)]. Now if (b0 + n(1), y(b0 + n(1)))               n(1)E , then y(x) can be extended over 

an interval (another) [b0 + n(1), b0 + 2n(1)] of length n(1). Continuing this way, we can say that there 

exist an integer j(1)  1 such that y(x) can be extended over a  x  b1, where b1 =  b0 + j(1)n(1) and this 

(b1 , y(b1))  n(1)E .  

 Let n(2) be so large that (b1 , y(b1))  n(2)E . Applying the same procedure we can say that there 

exist an integer j(2)  1 such that y(x) can be extended over             a  x  b2, where b2 =  b1 + j(2)n(2) 

such that (b2 , y(b2))  n(2)E . Continuing in this way, we get a sequence of integers n(1), n(2), ……… 

such that n(1) < n(2) < n(3), …… and numbers b0 < b1 < b2 ……. such that y(x) can be extended over [a, 

+] where bk  + as k   and (bk , y(bk))  n(k)E . This sequence of points (b1,y(b1)), (b2,y(b2)), ……. 

(bk,y(bk)), ………. is either unbounded or bounded. If bounded, then by Bolzano Weierstrass Theorem 

this sequence has a limit point (say y0). [If unbounded, we can apply theorem 4.2.2]. We claim that this 

limit point lies on the boundary of set E and cannot be an interior point of E.  

 If this is possible, then there exist a neighbourhood N of the limit point        (+ , y0) such that N 

is contained in E i.e. N(+ , y0)  E. Since (+ , y0) is the limit point of the sequence, therefore N (+ , 
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y0) contains infinitely many terms of the sequence (b1,y(b1)), (b2,y(b2)), ……. If (+ , y0) is not on E, 

then N (+ , y0) contains some term (bk , y(bk)) corresponding to 1, on the right of + . 

This is a contradiction as [a, +] is right maximal interval of existence.  

 (+ , y0)  lies on E  and y(x)  E  as x  +. 

 Similarly, it can be proved that y(x) can be extended over a left maximal interval of existence say 

(- , a). 

 Therefore, y(x) can be extended over a maximal interval of existence (- , +) and y(x)  E  as 

x  -  or x  +. This completes the proof of theorem.  

4.4 Dependence of solutions on Initial conditions and on    

         the function f 

A.  Dependence on Initial Conditions      

 We now consider how the solution of the differential equation dy/dx = f (x, y) depends upon a 

slight change in the initial conditions or upon a slight change in the function f. We will show that under 

suitable restrictions such slight changes would cause only slight changes in the solution.  

 We first consider the result of a slight change in the initial condition            y(x0) = y0. Let f be 

continuous and satisfies a Lipschitz condition with respect to y in a domain D and let (x0, y0) be a fixed 

point of D. Then by existence and uniqueness theorem, the initial value problem  

   ( , )
dy

f x y
dx

  

   y(x0) = y0 

has a unique solution  defined on some sufficiently small interval |x – x0|  h0. Now suppose the initial 

y value is changed from y0 to Y0. If Y0 is such that |Y0 – y0| is sufficiently small, then we can be certain 

that the new initial value problem  

   ( , )
dy

f x y
dx

  
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   y(x0) = Y0 (1) 

also has a unique solution on some sufficiently small interval |x – x0| ≤ h1. 

 In fact, let the rectangle, R: x – x0  a, y – y0  b, lies in D and let Y0 be such that Y0 – y0  

b/2. Then by existence and uniqueness theorem, this problem (1) has a unique solution  which is 

defined and contained in R for x - x0    h1, where h1 = min (a, b/2M) and M = max f (x, y) for (x, y)  

R. Thus we may assume that there exists  > 0 and h > 0 such that for each Y0 satisfying Y0 – y0   , 

problem (1) possesses a unique solution (x, Y0) on x – x0  h (see Figure). 

 

 

 

 

 

 

 

Figure 

 We are now in a position to state the basic theorem concerning the dependence of solutions on 

initial conditions.  

Theorem 4.4.1 Hypothesis  

1. Let f be continuous and satisfies Lipschitz condition with respect to y, with Lipschitz constant k, 

in a domain D of the xy plane and let (x0, y0) be a fixed point of D.  

2. Assume there exists  > 0 and h > 0 such that for each Y0 satisfying Y0 – y0   , the initial value 

problem. 

    ( , )
dy

f x y
dx

  
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  y(x0) = Y0  (1) 

 possesses a unique solution (x, Y0) defined and contained in D on x – x0  h. 

Conclusion 

 If  denotes the unique solution of (1) when Y0 = y0, and  denotes the unique solution of (1) 

when  0 0Y y , where 0 0 1 ,y y      then  

    kh

1( ) ( )     δ  ex x       on |x - x0|  h. 

Proof From Existence and Uniqueness theorem, we know that   

 
n

n  
  lim   

 
  

where 

 

0

n 0 n-1(x)   + f [t, (t)] dt (n = 1, 2, 3,...)

x

x

y    

and    0 0(x) = y ;  |x - x0|  h. 

Similarly,  

 
n

n  
  lim   

 
  

where  

0

n 0 n-1(x)   + f [t, (t)] dt (n = 1, 2, 3,...)

x

x

y     

and 0 0 0(x) = y ;  |x - x |  h.     

We shall show by induction that  

 
j jn

0
n n 1

j=0

k  (x - x )
(x) - (x)   δ   

j!
     (2) 
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on [x0 , x0 + h], where k is the Lipschitz constant. We assume that on  [x0 , x0 + h],  

  
j jn-1

0
n-1 n-1 1

j=0

k  (x - x )
(x) - (x)   δ   

j!
     (3) 

Then  

  

0 0

n n 0 n-1 0 n-1(x) - (x)    + f [t, (t)] dt    f [t, (t)] dt 

x x

x x

y y         

    

0

0 0 n-1 n-1   + f [t, (t)] - f [t, (t)]  dt.   

x

x

y y      

Applying Lipschitz condition, we have  

   n-1 n-1 n-1 n-1f [x, (x)] f [x, (x)]  k (x) - (x)        

 and since 
0 0 1  = δy y , so 

   

0

n n 1 n-1 n-1(x) - (x)   δ  + k (t) - (t)  dt

x

x

     .  

 Using the assumption (3), we have 

   

0

j jn-1
0

n n 1 1

j=0

k  (t - x )
(x) - (x)   δ  + k δ    dt

j!

x

x

     

     = 

0

jn-1
j

1 1 0

j=0

k
δ  + k δ     (t - x )  dt

j!

x

x

    

     = 
j+1 j+1n-1

0
1

j=0

k (x - x )
δ  1 +  

(j +1)!

 
 
 

 .  

 Since  
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j+1 j+1n-1

0
1

j=0

k (x - x )
δ  1 +    

(j +1)!

 
 
 

  = 
j jn

0
1

j=0

k  (x - x )
δ   

j!
 , 

 we have  
j jn

0
n n 1

j=0

k  (x - x )
(x) - (x)   δ   

j!
     , 

 which is (3) with (n – 1) replaced by n. 

 Also, on  [x0 , x0 + h], we have 

   

0 0

1 1 0 0 0 0(x) - (x)    + f [t, ] dt    f [t, ] dt 

x x

x x

y y y y        

      

0

0 0 0 0   + f [t, ]    f [t, ]  dt

x

x

y y y y    

0

1 0 0 δ  +  k  -  dt

x

x

y y   = 1 + k 1 (x – x0). 

 Thus (2) holds for n = 1. Hence the induction is complete and (2) holds on  [x0, x0 + h]. Using 

similar arguments on [x0 – h, x0], we have 

  
j j jn n

0
n n 1 1

j=0 j=0

k  |x - x | (kh)  
(x) - (x)   δ    δ   

j! j!
      

for all x on  x- x0  h, n = 1, 2, 3……. Letting n  , we have  

   
j

1

j=0

(kh)  
(x) - (x)   δ    

j!
 



  . 

 But  
j

j=0

(kh)  
  

j!



  = e
kh 

; and so we have the desired inequality 

   
kh

1(x) - (x)   δ e    on |x - x0| ≤ h. 

 This completes the proof of the theorem.  
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Remark Thus under the conditions stated, if the initial values of the two solutions  and   differ by a 

sufficiently small amount, then their values will differ by an arbitrary small amount at every point of  x- 

x0  h. Geometrically, this means that if the corresponding integral curves are sufficiently close to each 

other initially, then they will be arbitrarily close to each other for all x such that  x- x0  h.  

B. Dependence on the Function f   

We now consider how the solution of dy/dx = f(x, y) will change if the function f is slightly changed. In 

this connection we have the following theorem. 

Theorem 4.4.2  Hypothesis 

1. In a domain D of the xy plane, assume that  

 (i) f is continuous and satisfies Lipschitz condition with respect to y, with Lipschitz constant 

k.  

 (ii) F is continuous. 

 (iii) F(x, y)- f(x, y)   for (x, y)  D. 

2. Let (x0, y0) be a point of D and let  

 (i)  be the solution of the initial value problem  

    

0 0

( , )

( )

dy
f x y

dx

y x y





 

 (ii)  be a solution of the initial value problem  

      ( , ),
dy

F x y
dx

  

    0 0( )y x y  

 (iii) [x, (x)] and [x, (x)]  D for x – x0  h. 

 



Ordinary Differential Equations-I  MAL-514 

DDE, GJUS&T, Hisar  101 |  

 

Conclusion Then   0( ) ( ) ( 1)  .khx x e on x x h
k


       

Proof Let  0( ) ( )x x   and define a sequence of function  n  by 

 
0

0 1 0( ) [ ,  ( )] ,     
x

n n
x

x y f t t dt x x h          (n = 1, 2, 3, ……) 

Then lim  n
n

 


  is a solution of dy/dx = f(x, y) such that 0 0( )x y   on x – x0  h. 

By Hypothesis 1(i), the initial-value problem dy/dx = f(x, y), y(x0) = y0, has a unique solution on x – x0 

 h. Thus from Hypothesis 2(i) 
0( ) ( ) on   x x x x h    , and so lim  n

n
 


 .  

From Hypothesis 2(ii) we have  

   
0

0 0( )  [ , ( )] ,     
x

x
x y F t t dt x x h     . 

We shall show by induction that  

   
j-1 j

0

1

k  (x - x )
( ) ( )

j!

n

n

j

x x  


    (1) 

on [x0, x0 + h]. We assume that on this interval  

   
j-1 j1

0
1

1

k  (x - x )
( ) ( )

j!

n

n

j

x x  






    (2) 

Then  

  
0 0

0 1 0( ) ( ) [ ,  ( )] [ , ( )] 
x x

n n
x x

x x y f t t dt y F t t dt          

     
0

1[ ,  ( )] [ ,  ( )]  
x

n
x

f t t F t t dt   . 

We write F(x ,y) = f(x, y) + (x, y). Then  

  
0

1( ) ( )   [ ,  ( )]  [ ,  ( )] - δ [ ,  ( )]  dt.
x

n n
x

x x f t t f t t t t          
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 Applying the inequality |A – B|  |A| + |B| and then the Lipschitz condition satisfied by f, we 

have  

  
0 0

1( ) ( )   [ ,  ( )]  [ ,  ( )]  dt + δ [ ,  ( )]  dt
x x

n n
x x

x x f t t f t t t t           

     
0 0

1k ( ) - ( )  dt + δ [ ,  ( )]  dt.
x x

n
x x

t t t t     

 Now using the assumption (2) and the fact that   

   | (x, y)| =  F(x, y)- f (x, y)  , 

 we obtain  

  
0 0

j-11
j

0

j=1

k  
( ) ( )   kε  (t - x )  dt  ε dt

j!

n x x

n
x x

x x 


      

    =   
j j + 11

0
0

j = 1

k  (x - x )   
ε   + ε (x - x )

(j + 1)!

n

  

    =   
j -1 j

0

j = 1

k (x - x )   
ε   

j!

n

 . 

 Thus (2) holds with (n – 1) replaced by n. Also Hypothesis 1 (iii) shows that    

  
0 0

1 0( ) ( )   f [ ,  ( )] F [ ,  ( )]  dt  ε dt = ε (x - x )
x x

x x
x x t t t t           

 on [x0, x0 + h]. Thus (1) holds for n = 1. Thus the induction is complete and so (1) holds on [x0, 

x0 + h] for n = 1, 2, 3, ….. 

 Using similar arguments on [x0 – h,  x0], we thus have     

   
j-1 j j

0

1 1

k  |x - x | ε (kh)
( ) ( )   ε    

j! k j!

n n

n

j j

x x 
 

     

 for all x on |x – x0|  h, n = 1, 2, 3, ….. 

 Letting n  , we obtain  
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j

1

ε (kh)
( ) ( )    

k j!j

x x 




    

 But  
j

1

(kh)

j!j





  = e
kh

 – 1. Thus we obtain the desired inequality  

   
khε

( ) ( )    (e 1)
k

x x     on |x – x0|  h.  

 Thus, under the hypotheses stated, if  is sufficiently small, the difference between the solutions  

and  will be arbitrarily small on |x – x0|  h. This completes the proof of the theorem.      

4.5 Systems of Linear Differential Equations 

4.5.1 Introduction 

Upto now, we obtained solutions of single differential equation of different types and obtained 

the existence and uniqueness of solution of the initial value problem of first order equation which are not 

necessarily linear. However, we come across practical situations where we have to deal with more than 

one differential equation with many variables or depending upon a single variable. For example, if we 

consider the motion of a particle in three dimensions, we get one such situation. 

4.5.2 Systems of First Order Equations  

In analogy with the system of the single equation x'(t) = f (t, x), t  I, we shall study the system 

of equations by considering the following n-equations: 

  1x= f1(t, x1, x2, ……. xn) 

  2x = f2(t, x1, x2, ……. xn) 

  …   …   …   …     …   …  

  nx = fn(t, x1, x2, ……. xn) (1) 

where f1, f2, ... fn are the given n-real valued functions defined on the domain D in R
n+1

 and x1, x2, 

……., xn are functions of t to be determined from the equations. Our problem is to find an interval I and 

n-differentiable functions 1, 2, . … n on I such that 
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(i)  (t, 1(t), 2(t), ..., n(t)) is in D for t  I and 

(ii)  i'(t) = fi (t, 1(t), 2(t), ..., n(t)) for all t  I and i = 1, 2, 3, …. n. 

 When n such differentiable functions (1, 2, . … n) exist, (1, 2, . … n) is called a solution of 

(1) on I. 

 Using the vector notation x = (x1, x2, ……., xn) and F = (f1(t), f2(t), ….  fn(t)), the system can be 

written in the form x' = F(t, x) and the solution is denoted by             = (1, 2, . … n). 

Let us represent a linear system in the following form: 

  1x= a11(t) x1 + a12(t) x2 +…….+ a1n(t) xn + b1(t) 

  2x = a21(t) x1 + a22(t) x2 +…….+ a2n(t) xn + b2(t) 

  …   …   …   …     …   …  ….    …..    …..   ….  

  nx = an1(t) x1 + an2(t) x2 +…….+ ann(t) xn + bn(t), (2) 

 which is a linear system of n first order equations in n unknown functions x1, x2, ... xn and aij(t), 

bj(t) i, j = 1, 2, ... n are all given functions on I. The above system (2) is a particular case of (1), since ix

(t) can be taken as fi (t, x1, x2, ……. xn) where each fi is linear on I. By using matrices, we can represent 

(2) as 

  x'(t) = A (t) x(t) + B(t),  t  I (3) 

where 

 

1

2

n

x

x
x = 

....

x

 
 
 
 
 
 

, 

11 12 1n 1

21 22 2n 2

n1 n2 nn n

a a ... a b (t)

a a ... a b (t)
A(t) =   and B(t) = 

... ... ... ... ...

a a ... a b (t)

   
   
   
   
   
   

.      

(3) is a linear equation in x and it is a matrix representation of a linear non-homogeneous system. 

If B(t) = 0, then (3) reduces to a homogeneous system            x'(t) = A(t) x(t). 

4.6 Matrix Preliminaries  
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Let A(t) = [aij(t)], i,j = 1, 2, 3, ….. n be an n x n matrix of functions defined for t  I = [a, b]. 

Definition 4.6.1 The matrix A(t) = [aij(t)], t  I is said to be continuous or differentiable, if every 

element aij(t), i, j = 1, 2, ... n of the matrix A(t) is continuous or differentiable on I. The derivative A'(t) is 

obtained by differentiating every element of A(t), that is, A'(t) = [a'ij (t)], i, j = 1, 2, 3, ... n. 

Definition 4.6.2 If x = (x1, x2, ……. xn)  R
n
 , then the norm of x denoted by |x| is defined as 

  |x| = |x1| + |x2| + …… + |xn| = 
n

i

i = 1

x   . 

Definition 4.6.3 Let A = [aij] denotes an n x n matrix then the norm of the matrix A denoted by |A| is 

defined as |A| = 
n

ij

i, j = 1

a   . 

 If A(t) = [aij(t)] is a continuous matrix on I, then |A(t)| is also continuous on I. Also,  

(i) |A + B|  |A| + |B| 

(ii) |AB|  |A| |B| 

(iii) |A | = || |A| for every scalar 

(iv) |Ax|  |A| |x| for any vector x.      

Definition 4.6.4  A sequence {An} of matrices is said to be convergent, if given any  > 0, there exists a 

positive integer n0 such that |Am – An| <  for all m, n  n0. 

Definition 4.6.5 A sequence {An} of matrices is said to tend to a limit A, if given any  > 0, there exists 

a positive integer n0 such that |An – A| <  for all n  n0. 

Definition 4.6.6 The infinite series n

n = 1

A  


  of matrices is said to be convergent, if the sequence of 

partial sums of the series is convergent and the sum of the series is the limit matrix of partial sums. 



Ordinary Differential Equations-I  MAL-514 

DDE, GJUS&T, Hisar  106 |  

 

Definition 4.6.7 The exponential of a matrix A is defined as 
n

A

n = 1

A  
e  = I + 

n!



 , where the convergence of 

the series is in the sense of the Definition 6 and A
n
 represents the n-th power of A and I is the identity 

matrix.   

 From the above definition, the following important properties are observed: 

(i)  |e
A
|  (n - 1) + e

|A|
 where | | denotes the norm. 

Proof 
n

A

n = 1

A  
e  = I + 

n!



 ,  where I is the identity matrix of order n.  

 Hence |e
A
|   | I | +

n

n = 1

A  
 

n!



  

 Now for any matrix A = [aij], |A| =
ij

i, j

| a |  so that we have |I| = n. Hence we have 

 |e
A
|   n – 1 + 1 +

n

n = 1

A
 

n!



  = (n – 1) + 

n

n = 0

A
 

n!



  = (n – 1) + e
|A|

 

 which gives |e
A
|  (n – 1) + e

|A| 
. 

(ii) For matrices A and B, it is not true in general that e
A+B

 = e
A
 . e

B
 but this relation is valid when A 

and B commute.  

Definition 4.6.8 The sum of the diagonal elements of a matrix A is called the trace of A. If A is the 

given matrix, then the trace of A is denoted by trA.  

4.7 Representation of n-th Order Equation as a System  

 Any differential equation of order n can be written as a system of n first – order differential 

equations.  

 Theorem 4.7.1 The general n-th order initial value problem 

  x
(n)

 = f (t, x, x', ….. x
(n-1)

), t  I (1) 
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  x (t0) = a0, x' (t0) = a1, ... x
(n-1)

 (t0) = an-1, t0  I 

 where a0, a1, a2, …… an-1, are given constants, is equivalent to a system of n-linear equations.  

Proof We define a new family of unknown functions xn = x
(n – 1)

 .  

 i.e.  x1 = x, x2 = x', x3 = x", …… xn-1 = x
(n – 2)

 , xn =   x
(n – 1)

. 

 We can then rewrite the original differential equation as a system of differential equations with 

order 1 and dimension n. Thus we have the system of equations  

   1x  = x' = x2   

   2x  = x'' = x3 

   3x  = x''' = x4  

   … …. …. 

   n -1x  = x
(n-1)

 = xn    

 and   nx  = x
(n)

 . (2) 

Using the above change of variables, we get 

    nx (t) = f (t, x1, x2, ….., xn).   (3) 

Let  = (1, 2, ... n) be a solution of (2). Then 

   2 = 1 , 3 = 
( 1)

2 1 1 = ,  .....,  n

n        (4) 

Hence  f (t, 1 , 2 , ... n ) = f [t, 1 , 1 , ... 
( 1)

1

n 
(t)] = 

(n)

1 (t) 

 which shows that the component 1 is a solution of (1). Conversely, if 1(t) is a solution of (1), 

then the vector  = (1, 2, ... n) is a solution of (2). Thus, system (2) is equivalent to (1). 

Further we obtain the initial conditions of the system as a vector 

   1 (t0) = a0 , 1 (t0) = a1 , …… 
( 1)

1

n 
(t0) = an-1 
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so that the vector (t0) = (a0, a1, a2, ... an-1) gives the initial condition. 

 Now, we shall transform the linear equations of order n into a system of equations.  

The general n-th order equation is  

   a0(t) x
(n)

 + a1(t) x
(n-1)

 + …. + an(t) x = b(t), t  I (1) 

where a0(t)  0 for any t  I.  

Now make the following substitutions: 

   x(t) = x1(t)    

      1x (t) = x'(t) = x2   

   2x (t) = x''(t) = x3 

   3x (t)= x'''(t) = x4  

   … …. ….  ….. 

   n -1x (t) = x
(n-1)

(t) = xn    

   nx (t) = x
(n)

(t). (2) 

Rewriting equation (1), we get 

  
(n) (n-1)n n-1 1

0 0 0 0

 a (t) a (t) a (t) b(t)
x  =  x   x'  ...   x  

a (t) a (t) a (t) a (t)


     

Using (2) in the above equation 

  
(n) n n-1 1

1 2 n

0 0 0 0

 a (t) a (t) a (t) b(t)
x  =  x    x   ...   x  

a (t) a (t) a (t) a (t)


     

Using the matrix notation, the above system can be rewritten as 

      1x (t) = 0 x1  + 1 x2 + …… + 0 

   2x (t) = 0 x1  + 0 x2 + 1 x3 + …… + 0 



Ordinary Differential Equations-I  MAL-514 

DDE, GJUS&T, Hisar  109 |  

 

   … …. ….  …..   …. ….    ……   ……. 

   nx (t) = n n-1 1
1 2 n

0 0 0 0

 a (t) a (t) a (t) b(t)
 x    x   ...   x  

a (t) a (t) a (t) a (t)


     (3) 

Thus, the above system can be written in the matrix form as 

 

1 1

2 2

n n-1 n-2 1

n n

00 0 0 0

0 1 0 ... 0 0
x x

0 0 1 ... 0 0
x x

... ... ... ... ... ..
 =   +   .. ..

0 0 0 ... 1 ..
.. ..

 a  a a  a b(t)
...x x

aa a a a

   
      

      
      
      
      
         
          

  

 

Using the vector notation, we get 

   x' = A(t)x + B(t)  (4) 

Note The n-th order linear equation (1) is equivalent to the system (2) leading to the matrix differential 

equation (4). 

 

Example 4.7.2 The matrix form of the system of equations 

  1x  =  x1  + 2 x2 ,   2x  = 4 x1  + 3 x2  

is  
1 1

2 2

x x1 2
 =  

x x4 3

    
    

    
.  

Example 4.7.3 Find the matrix form of the linear equation 

  x"' - 4x" + 10x' - 6x = 9t (1) 

Let us make the following substitution 

  x1 = x,  x2 = x',   x3 = x'' (2) 

and express x, x', x'' and x"' in terms of x1, x2, x3 and their derivatives. 
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 From (2)  x' = 1x  = x2 

   x" = 2x  = x3 and x''' = 3x .  (3) 

Using (3) in (1), we get 

  3x  = 4x3 - 10x2 + 6x1 + 9t  

and  1x  = 0 + 1x2 + 0  (4) 

  2x  = 0 + 0 + 1x3  (5) 

  3x  =  6x1- 10x2 + 4x3 + 9t (6) 

With the help of (4), (5) and (6), we get 

  

1 1

2 2

3 3

x x0 1 0 0

x x = 0 0 1   + 0

6 10 4x x 9t

      
      
      
            

 

4.8 Existence and Uniqueness of Solutions of System of Equations 

 In this section we will solve the initial value problem of the vector differential equation 

   x'(t) = A(t)x(t),     x(t0) = x0,       t  I 

 where A(t) is an n x n matrix defined over I and x(t) is a vector function on I. For a fixed t0, x(t0) 

is a fixed vector. We shall state and prove the following theorem for a system of equations given in the 

vector form. 

Theorem 4.8.1 Let A(t) be a continuous n x n matrix defined on a closed and bounded interval I. Then 

the initial value problem  

   x'(t) = A (t) x(t),    x(t0) = x0,  t, t0  I  (1) 

 has a unique solution on I. 

Proof We first note that the initial value problem (1) is equivalent to the solution of the vector integral 

equation 
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0

0

t

x(t) = x  + A(s) x(s) ds 

t

  (2) 

 which gives x(t0) = x0. On differentiating (2), we get 

   x'(t) = A(t) x(t), t  I 

 If x(t) is a vector solution of (1), then integrating (1), we get 

   

0

0

t

x(t) = x(t ) + A(s) x(s) ds. 

t

   

 With the help of the successive approximations, we shall show that {xn(t)} is a Cauchy sequence 

in R
n
 for every t  1. Since R

n
 is complete, {xn(t)} converges uniformly to a limit x(t) and then we prove 

its uniqueness. Let us define the approximations by 

  

0

0 0 n+1 0 n

t

x(t ) = x  , x (t) = x  + A(s) x (s) ds 

t

 ,  t  t0, t  I  

 for n = 0, 1, 2, 3, …….. 

 Since x0 is a given vector, the sequence {xn(t)} is well-defined. First we shall show that {xn(t)} 

converges uniformly on I to a function x(t) which is the solution of the initial value problem (1) and for 

this it is enough to show that {xn(t)} is a Cauchy sequence in R
n
. Since R

n
 is complete {xn(t)} converges 

to x(t). To show that xn(t) is a Cauchy sequence, let us consider 

    0 n+1 n

1

 x (t) + x (t) - x (t)
n





  

where sequence of partial sums is xn(t).  

Hence, consider 

    
0

n+1 n n n-1

t

x (t) - x (t) = A(s) x (s) - x (s)  ds 

t

  

 We shall construct an upper bound for | n+1 nx (t) - x (t) | by induction method where | | is the norm.  

 Since A(t) is a continuous matrix defined on I, there exists a constant M such that 
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    |A(t)|  M, t  I  (4) 

Now    

0

1 0 0

t

x (t) - x (t) = A(s) x (s) ds 

t

  

so that    

0

1 0 0

t

x (t) - x (t)   A(s)  x  ds 

t

   

Using (4), we have  
1 0x (t) - x (t)   M |x0| (t – t0) (5) 

Similarly, we find   

    

0

2 1 1 0

t

x (t) - x (t) = A(s) (x  - x ) ds 

t

  

    

0

2 1 1 0

t

x (t) - x (t)    A(s)  x  x  ds 

t

   

    

0

2 1 0 0

t

x (t) - x (t)   M M x s  t  ds 

t

   

             = 

2

0 02
x  (t - t )

M
2!

 

 Proceeding in same manner, we have by induction 

    

n+1 n+1

0 0

n+1 n

M x  (t - t )
x (t)  x (t)   

(n + 1)!
   (6) 

 which is the (n + 2)-th term of a convergent series 

n-1 n-1

0 0

1

M x  (t - t )
 

(n - 1)!n





 of positive constants 

whose sum is 0M (t - t )

0x  e .  Since the n-th term of a convergent series tends to zero as n  , the right 

hand side of (6) tends to zero as n  . Hence {xn(t)} is a Cauchy sequence in R
n
 for each t  I. Since 

R
n
 is complete, xn(t)  x(t) in the norm | |. Since the norm convergence is uniform, xn  x uniformly on 

I. 

 Now consider 
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0

n+1 0 n

t

x (t) = x  + A(s) x (s) ds 

t

  (7) 

 Taking the limit as n   on both sides of (7), we have  

    

0

0 n

t

x(t) = x  + lim A(s) x (s) ds 

t

n    (8) 

 Since xn(t)  x(t) uniformly on I, we can take the limit under the integral sign of (8) to get 

    

0

0

t

x(t) = x  + A(s) x(s) ds 

t

    

 which proves that x(t) is the solution of the integral equation. Since the solution of the above 

integral equation and the initial value problem (1) are equivalent, x(t) gives the solution of the initial 

value problem.  

 Now, we shall prove the uniqueness of the solution. If the solution x(t) is not unique, let y(t) be 

another solution of (1). 

Then we get   

0

0

t

x(t) = x  + A(s) x(s) ds 

t

   

    

0

0

t

y(t) = x  + A(s) y(s) ds 

t

   

Or    
0t

x(t) - y(t) =  A(s) x(s) - y(s)  ds 

t

  

so that   

0t

x(t) - y(t)    M x(s) - y(s)  ds 

t

   

Thus, for any given  > 0, we get from the above inequality 

   

0t

x(t) - y(t)    ε + M  x(s) - y(s)  ds 

t

   

Let us take z(t) = |x(t) - y(t)|. Then we have 
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0t

z(t)   ε + M  z(s) ds 

t

  ,  t  I 

If r(t) = 

0t

ε + M z(s) ds 

t

 , then r(t0) =  and z(t) < r(t). From the definition                       r'(t) = M z(t) < M 

r(t) so that we have r'(t) - M r(t) < 0. 

Integrating the left hand side of the above inequality, we get 

    0MtMt

0r(t) e - r(t ) e  < 0


  

from which we have  0M(t - t )

0r(t) <  r(t ) e  

Hence    0M(t - t )
z(t) < r(t) <  ε e , since r(t0) = . 

 Since the above inequality is true for each  > 0, we get z(t) < 0 which implies |x(t) - y(t)| = 0 

which gives x(t) = y(t) on I. This proves that the solution is unique. Hence the proof of the theorem is 

complete. 

Note The zero vector function on I is always a solution of (1). If the solution of (1) is zero for any to t0 

 I, and since the solution is unique, then it must be zero throughout I.  

Corollary 4.8.1.1 x(t) = 0 is the only solution of the initial value problem x' = A(t)         x, x(t0) = 0 

where t, t0  I and A(t) is a continuous matrix on I. 

Proof  Let us find the successive approximations 

  

0 0

1 0 0

t t

x (t) = x  + A(s) x (s) ds  0 + A(s) 0 ds = 0

t t

    (1) 

  

0 0

2 0 1

t t

x (t) = x  + A(s) x (s) ds  0 + A(s) 0 ds = 0

t t

    (2) 

In a similar manner, we can show that xn(t) = 0 for all n. 

 Hence xn(t)  0 as n   for all n implies x(t) = 0. Thus x(t) = 0 is the only solution. 

4.9  Check Your Progress  
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Q.1 Define maximal and minimal interval of existence of solution of an IVP. 

Q.2 Write  an explanatory  note  on  dependence  of  solution  of  an  IVP on initial conditions. 

Q.3 Represent the general nth order linear equation as a system of first order equations. 

Q.4 Transform the following system of equations into an equivalent single equation of higher order: 

 
2 2

1 2 2 1 1 2 2, (1 )x x x x x x x       . 

4.10 Summary 

This chapter is devoted to the study of finding the largest open interval over which the solution of 

IVP is defined and then establishing the conditions for the continuation of solution in a general domain. 

Further, dependence of solutions of initial value problems on initial conditions and functions are also 

proved. In last, the study of solution of the initial value problem of first order equation is extended to 

analyse systems of first order differential equations. The criterion for existence and uniqueness of 

solutions for linear system of equations is presented.  

4.11 Keywords  

 Continuation of solutions, Maximal interval, Existence, Uniqueness, System of equations. 

4.12  Self-Assessment Test  
 

Q.1 Convert the following equations into equivalent first order systems: 

(i) 
2(1 ) 2 ( 1) 0, ( 1 1)x y xy n n y x        

(ii)  2 2 0y xy ny     

(iii)  
2 2y y x y     

(iv)  
2( 1) 0.x x x x     

 

4.13  Answers to check your progress  
 

Ans. 4 
3 2( ) 0.x x x x x x         
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5.0  Learning Objectives  

The purpose of this chapter is to introduce the reader to Pfaffian differential equations, their 

condition of integrability and some methods to solve such equations. Some theorems for differential 

inequations are also presented.  

 

5.1 Introduction 

The purpose of this chapter is to study Pfaffian (Total) differential equations and differential 

inequations. Certain methods to solve Pfaffian differential equations in three variables are explained. The 

most important techniques in the theory of differential equations involve the integration of differential 
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inequalities Gronwall inequality is proved in this context. Comparison theorems are also presented to 

compare the unknown solutions of one differential equation with the known solutions of another.  

5.2 Pfaffian Differential Forms and Equations  

 The expression 
n

i 1 2 n i

i=1

F (x , x , ........, x ) dx                                      (1) 

 where Fi (i = 1, 2, ….., n) are continuous functions of some or all of the n independent variables 

x1, x2, …..xn, is called a Pfaffian differential form of n variables. The relation  

   
n

i i

i=1

F  dx  = 0  (2) 

is called a Pfaffian differential equation or total differential equation in n variables.  

 We shall consider Pfaffian differential equations in two variables and those in a higher number of 

variables, separately. 

 In the case of two variables we may write equation (2) in the form  

   P(x, y) dx + Q(x, y) dy = 0 (3) 

 which is equivalent to  

     ( , )
dy

f x y
dx

 , (4) 

if we write f(x, y) = - P/Q. Now the functions P(x, y) and Q(x, y) are known functions of x and y, so that 

f(x, y) is defined uniquely at each point of the xy plane at which the functions P(x, y) and Q(x, y) are 

defined.  

 The fundamental existence theorem in the theory of ordinary differential equations is of the form: 

Theorem 5.2.1 A Pfaffian differential equation in two variables always possesses an integrating factor.  

Proof A Pfaffian differential equation in two variables is   

   P(x, y) dx + Q(x, y) dy = 0 (1) 
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where the functions P and Q are continuously differentiable.  

If  Q(x, y)  0, then  
dy - P(x, y)

 = 
dx Q(x, y)

 

Then, by existence theorem, this equation has  a solution. 

Let (x, y) = c be a solution of this equation. 

  d(x, y) = 0  

  
ψ ψ

 dx +  dy = 0
x y

 

 
 (2) 

Comparing (1) and (2)  

  P(x, y)  = 
ψ

x




, Q(x, y)  = 

ψ

y




, 

 
P Q

 = ,
y x

 

 
 which is the condition for given equation to be exact.  

 In case, given equation (1) is not exact, then multiplying (1) by  i.e.  

  (x, y) P(x, y) dx + (x, y) Q(x, y) dy = 0 

 Now, using condition of exactness, we get  

  
y




[(x, y) P(x, y)] =  

x




[(x, y) Q(x, y)] (3) 

 Find value of (x, y) from (3), which when multiplied to given equation, makes it exact. Then the 

equation is said to be integrable and will possess an integrating factor.    

5.3 Pfaffian Differential Equation in Three Variables  

When there are three variables, the Pfaffian differential equation is of the form  

   P dx + Q dy + R dz = 0, (1) 
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 where P, Q and R are functions of x, y and z. If we introduce the vector           X = (P, Q, R) and 

dr = (dx, dy, dz), we may write this equation in the vector notation as 

   X. dr = 0 (2) 

 Before discussing this equation, we first consider two lemmas: 

Lemma 5.3.1 A necessary and sufficient condition that there exists between two functions u(x, y) and 

v(x, y) a relation F(u, v) = 0, not involving x or y explicitly is that  

   
 (u,v)

 = 0
 (x,y)




. 

Proof First, the condition is necessary. We have a relation of the form  

   F(u, v) = 0 (1) 

Differentiating this identity with respect to x, we get  

   
 F  F

  +   = 0
u x v x

u v   

   
   (2) 

and differentiation with respect to y yields  

   
 F  F

  +   = 0
u y v y

u v   

   
 (3) 

Eliminating 
 F

v




from these two equations, we get  

   
 F

   -   = 0
u x y y x

u v u v     
 

     
  

 But the relation (1) involves both u and v, it follows that 
 F

u




is not identically zero, so that  

   
 (u,v)

 = 0
 (x,y)




 (4) 
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 Second, the condition is sufficient. We may easily eliminate y from the equations  

   u = u (x, y),   v = v (x, y). 

Let the resultant eliminant be 

   F (u, v, x) = 0. (5) 

Differentiating this relation with respect to x, we get 

   
 F  F  F

 +   +   = 0
x u x v x

u v    

    
 

and differentiating with respect to y, we get  

   
 F  F

  +   = 0
u y v y

u v   

   
 

Eliminating 
 F

v




from these two equations, we find that  

   
 F ( , )  F

  +   = 0
x y (x, y) u

v u v   

   
 

If the condition (4) is satisfied, we see that  

   
 F

   = 0
x y

v 

 
. 

 The function v is a function of both x and y, so that v/y can not be identically zero. Hence   

   
 F

  = 0
x




, 

 which shows that the function F does not contain the variable x explicitly. Thus from (5), we get  

   F(u, v) = 0.    

Lemma 5.3.2 If X is a vector such that X. curl X = 0 and  is an arbitrary function of x, y, z then (X). 

curl (X) = 0.    
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Proof From the definition of curl, we have  

  
, ,

(μR) (μQ)
μ . curl μ  = (μP)  -  

y zx y z

  
 

  
X X   

where X has components (P, Q, R). The right-hand side of equation may be written in the form  

  2

, , , ,

R Q μ μ
μ P  -  - μ PQ  - PR

y z z yx y z x y z

      
   
      

   

and the second of these sums is identically zero. Hence 

   
2μ . curl μ  = { . curl } μ  = 0   as . curl  = 0X X X X X X  

 The converse of this theorem is also true, as can be seen by applying the factor 1/ to the vector 

X.  

Note   Equations of the form  

  P dx + Q dy + R dz = 0, 

 do not always possess integrals. To find out the criterion for determining, whether or not an 

equation of this type is integrable, the following theorem is proved.  

Theorem 5.3.3 A necessary and sufficient condition that the Pfaffian differential equation         X. dr = 0 

should be integrable is that X. curl X = 0.  

Proof The condition is necessary, for if the equation  

   P dx + Q dy + R dz = 0 (1)  

is integrable, there exists among the variables x, y, z a relation of the type  

   F (x, y, z) = C (2) 

where C is a constant. Writing this in the differential form 
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 F  F  F

 dx +  dy +  dz  = 0
x y z

  

  
 (3) 

 Now, equations (1) and (3) must be identical, i.e. there must exist a function (x, y, z) such that 

    

 F F  F      
yx z =   =  = μ(x, y, z) (say)

P Q R

 

   

 i.e.  
 F  F  F

μP = ,  μQ = , μR =  
x y z

  

  
 

 i.e., such that X = grad F 

 Now, since curl grad F = 0   

 we have  curl(X) = 0 

 so that   X. curl (X) = 0 

 From Lemma 5.3.2 it follows that  

   X. curl X = 0 

 Sufficient condition. If z is treated as a constant, the differential equation (1) becomes  

   P(x,y,z) dx + Q(x,y,z) dy = 0,  (4) 

 which is a Pfaffian differential equation in two variables and by Lemma 5.3.1, it possesses a 

solution of the form  

    U(x, y, z) = c1 (5) 

where the “constant” c1 may involve z. In differential form (5) can be written as  

 d U(x,y,z) = 0 i.e.   
 U U

 dx +  dy = 0
x y

 

 
 (6) 

Now (4) and (6) must be identical. Thus there must exist a function  such that  
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U U

 = μP,     = μQ
x y

 

 
. (7) 

Substituting from the equations (7) into equation (1), we see that the latter equation may be written in the 

form 

    
U U U U

 dx +  dy +  dz + μR -  dz = 0
x y z z

    
 

    
 

which is equivalent to the equation  

   dU + K dz = 0, (8) 

if we write  

   K = 
U

μR - 
z




 (9) 

 Now we are given that X . curl X=0, and it follows from Lemma 5.3.2 that  

    µX. curl µX = 0 

Now  

  µX = (µP, µQ, µR) =  
U U U

 ,   ,  + K
x y z

   
 
   

 

   = grad U + (0, 0, K) 

Hence  

  µX. curl (µX) = 
U U U K K

 ,   ,  + K . , ,  0
x y z y x

       
   

       
 

             =  
U K U K

 
x y y x

   


   
. 

Thus the condition X. curl X = 0 is equivalent to the relation  
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(U,K)

0
(x,y)





 

 From Lemma 5.3.1, it follows that there exists between U and K a relation independent of x and 

y but not necessarily of z. In other words, K can be expressed as a function K (U, z) of U and z alone, 

and equation (8) takes the form  

    
dU

( , ) 0K U z
dz

   

which, by Theorem 1, has a solution of the form  

     (U, z) = c  

where c is an arbitrary constant. Now, replacing U by its expression in terms of x, y, and z, we obtain the 

solution in the form  

    F(x, y, z) = c 

which shows that the equation (1) is integrable.  

 Once it has been established that the equation is integrable, it only remains to determine an 

appropriate integrating factor µ (x, y, z). We shall discuss the solution of Pfaffian differential equations 

in three variables.  

5.4 Solution of Pfaffian Differential Equations in Three   

        Variables  

 We shall now consider some methods by which the solutions of Pfaffian differential equations in 

three variables x, y, z may be derived.  

(a) By Inspection   Once the condition of integrability is satisfied, one may find by rearranging the 

terms or dividing or multiplying by some suitable function to reduce to a form containing some or 

several parts, which are exact differentials. It is often possible to derive the primitive of the equation by 

inspection. In particular, we may also have curl X = 0, then X must be of the form grad u, and hence the 

equation X . dr = 0 reduces to the form  
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         so that  

   u(x, y, z) = c   is a solution.  

Example 5.4.1 Solve the equation  

   (x
2
z – y

3
) dx + 3xy

2
 dy + x

3
 dz = 0 

first showing that it is integrable. 

Solution To test for integrability, we note that X =   (x
2
z – y

3
 , 3xy

2
 , x

3
 ), so that curl X = (0, -2x

2
, 6y

2
), 

and hence X. curl X = 0. 

 We may write the equation in the form  

   x
2
(z dx + x dz) – y

3
 dx + 3xy

2
 dy = 0 

i.e.    
3 2

2

y 3y
z dx + x dz -  dx +  dy = 0

x x
 

i.e.    

so that the primitive of the equation is  

   x
2
z + y

3
 = cx  

where c is a constant.  

Example 5.4.2 Solve the equation  

   (y + x) dz + dx + dy = 0, 

by showing that it is integrable. 

Solution Here P = 1, Q = 1, R = y + x 

   z y x z y x . curl  = P [Q  - R ] + Q [R  - P ] + R [P  - Q ] = 0X X  

Hence, equation is integrable.  

u u u
 dx +  dy +  dz = 0,

x y z

  

  

3y
 d(xz) + d   = 0

x

 
 
 
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Dividing the given equation by (y + x) throughout, we obtain  

    

Hence    x + y = ce
-z

 is required solution. 

(b) Variables Separable Method In this case it is possible to write the Pfaffian differential equation in 

the form  

   P(x) dx + Q(y) dy + R(z) dz = 0 

which obviously gives on integration  

         P x  dx  Q y  dy  R z  dz = c     

where c is a constant.  

Example 5.4.3  Solve the equation  

   a
2
y

2
z

2
 dx + b

2
z

2
x

2
 dy + c

2
x

2
y

2
 dz = 0 

Solution If we divide both sides of this equation by x
2
y

2
z

2
 , we have  

   
2 2 2

2 2 2

a b c
 dx   dy   dz  0

x y z
    

On integration, we obtain the integral surfaces as 

    
2 2 2a b c

      k
x y z

    

where k is a constant.  

Example 5.4.4 Solve the equation  

   a
2
yz dx + b

2
zx dy + c

2
xy dz = 0 

Solution It is easy to verify the condition of integrability. Dividing the given equation by xyz, we get     

dx + dy
 dz +   = 0

x + y
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2 2 2a b c

 dx   dy   dz  0
x y z

   , 

which on integration gives   

    
2 2 2a b cx  y  z  = k  

as the required solution.  

(c) One Variable Separable It may happen that the equation is of the form  

   P(x, y) dx + Q(x, y) dy + R(z) dz = 0 (1) 

For this equation   

   X = {P(x, y), Q(x, y), R(z)} 

and a simple calculation shows that   

   
Q P

curl  = 0, 0,  - 
x y

  
 

  
X  

so that the condition for integrability, X. curl X = 0, implies that  

     

  In other words, P dx + Q dy is an exact differential, du say, and equation (1) becomes as     

   du + R(z) dz = 0 

with solution  

    u(x, y)  R z  dz  c   

Example 5.4.5 Verify that the equation  

   x(y
2
- a

2
) dx + y(x

2
- z

2
) dy - z(y

2
- a

2
) dz = 0 

is integrable and solve it. 

P Q
 = 

y x

 

 
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Solution If we divide throughout by (y
2
- a

2
) (x

2
- z

2
), we see that the equation assumes the form      

   
2 2 2 2

x dx - z dz y dy 
    0

x  z y  a
 

 
 

showing that it is separable in y. By the above argument it is therefore integrable if   

    

which is readily shown to be true. To determine the solution of the equation we note that it is   

  
2 2 2 21 1

log( ) log( ) log
2 2

x z y a c    , 

so that the solution is  (x
2
 – z

2
) (y

2
 – a

2
) = c

2
 = c, 

where, c is a constant.  

(d) Homogeneous Equations The equation  

   P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz = 0 (2) 

is said to be homogeneous if the functions P, Q, R are homogeneous in x, y, z of the same degree n. To 

solve such an equation we make the substitutions  

   y = ux,  z = vx. (3)    

Substituting (3) into (2), we see that equation (2) takes the form 

 P(1,u,v) dx + Q(1,u,v) (u dx + x du) + R(1,u,v) (x dv + v dx) = 0, a factor x
n
 cancelling out. If we 

now write  

   
(1, , )

( , ) = 
(1, , ) (1, , ) (1, , )

Q u v
A u v

P u v uQ u v vR u v 
     

   
(1, , )

( , ) = 
(1, , ) (1, , ) (1, , )

R u v
B u v

P u v uQ u v vR u v 
 

we find that this equation is of the form  

P R
 = 

z x

 

 
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and can be solved by method (c). 

Example  5.4.6 Verify that the equation  

   yz (y + z) dx + xz (x + z) dy + xy (x + y) dz = 0 

is integrable and find its solution.  

Solution  

 It is easy to show that the condition of integrability is satisfied. Making the substitution y = ux, z 

= vx, we find that the equation satisfied by x, u, v is 

 uv (u + v) dx + v (v + 1) (u dx + x du) + u (u + 1) (v dx + x dv) = 0 

which reduces to  

      
( 1) ( 1)

 0
2  (1 )

dx v v du u u dv

x uv u v

  
 

 
.   

Splitting the factors of du and dv into partial fractions,  

  
1 1 1 1

2  0
1 1

dx
du dv

x u u v v u v

   
       

      
 

or,  

  
dx du dv d (1 + u + v)

2  +  +  - 0
x u v 1 + u + v

 . 

The solution of this equation is obviously  

   x
2
uv = c( 1+ u + v),  

where c is a constant. In terms of original variables, we see that the solution of the given equation is  

   xyz = c(x + y +z).  

( , ) ( , ) 0
dx

A u v du B u v dv
x
  
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Example 5.4.7 Solve the equation 

  (y
2
 + yz)dx + (z

2
 + zx)dy + (y

2
 - yx)dz = 0 

Solution Here 

  P = y
2
 + yz, Q = z

2
 + zx, R = y

2
 – yx 

and   X . curl X = 0 i.e. condition of integrability is satisfied. 

Substituting  y = ux,  z = vx, we obtain  

  
2 2dx (v  + v) du + (u   u) dv

 +  0
x (1 + v)(u + v) u 


 .    

 Splitting the factors of du and dv into partial fractions, we see that this is equivalent to  

  
dx du dv du + dv

 +  +    0
x u v + 1 u + v

  , 

which on integration, gives the solution as  

   
x u(v + 1)

 C
u + v

     i.e.  

  
y(z + x)

 C
z + y

 .  

(e) Natani’s Method In this method, we assume one of the variables as constant. Let us treat the 

variable z as constant, so that the resulting differential equation 

  Pdx + Qdy = 0, is easily integrable.  

 Let its integral be given by  

   (x, y, z) = c1, c1 may involve z. (1) 

The solution of equation P(x,y,z) dx + Q (x,y,z) dy + R(x,y,z) dz = 0 is then of the form   

      (2) 2( , )z c 
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where c2 is a constant, and we can express this solution in the form  

     (x, y, z) = (z) 

where   is a function of z alone. To determine the function  (z) we observe that, if we give the 

variable x a fixed value,  say, then  

     (, y, z) = (z) (3) 

is a solution of the differential equation  

  Q(, y, z) dy + R(, y, z) dz = 0 (4) 

This equation will always have a solution of the form  

  K(y, z ) = c  (5) 

by using the methods of the theory of first order differential equations.  

 Since equations (3) and (5) represent general solutions of the same differential equation (4), they 

must be equivalent. Therefore, if we eliminate the variable y between (3) and (5), we obtain an 

expression for the function (z). Substituting this expression in equation (3), we obtain the solution of 

the Pfaffian differential equation.  

 The method is often simplified by choosing a value for , such as 0 or 1, which makes the 

solving of differential equation (4) easy. It is necessary to verify in advance that the equation is 

integrable before using Natani’s method.  

Example 5.4.8 Verify that the equation 

   z(z + y
2
) dx + z (z + x

2
) dy – xy (x + y) dz = 0 

is integrable and find its primitive.  

Solution For this equation  

  X = {z(z + y
2
), z(z + x

2
), – xy (x + y)} 

    Curl  X = 2 (-x
2
 – xy – z,   y

2
 + xy + z,    zx – zy) 
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and X. curl X = 0, showing that the equation is integrable. It is probably simplest to take dy = 0 in 

Natani’s method. The equation then becomes  

   
2

1 1 1 1
0dx dz

x x y z y z

   
      

    
 

showing that it has the solution  

   
2( )

( )
( )

x y z
f y

z x y





 (1) 

Now, let z = 1 in the original equation, it reduces to the simple form 

   
2 2

 0
1 1

dx dy

x y
 

 
 (2) 

This can be easily integrated to  

   tan
-1

x   +  tan
-1

y = constant = tan
-1 1

c
 (say)  

Now  

    1 1 -1tan x     tan  y  tan  
1

x y

xy

  
 


 

we see that the solution of equation (2) is  

     (3) 

This solution must be the form assumed by (1) in the case z = 1; or (3) must be equivalent to the relation 

    
2( 1)

( )
x y

f y
x y





 (4) 

Eliminating x between equations (3) and (4), we find that  

    f(y) = 1 – cy. 

1 xy
c

x y





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Substituting this expression in equation (1), we find that the solution of the equation is  

    x(y
2
 + z) = z(x + y) (1 – cy).  

Example  5.4.9 Solve by checking the integrability  

   y(1 + z
2
) dx – x  (1 + z

2
) dy + (x

2
 + y

2
) dz = 0 

Solution Divide throughout by (1 + z
2
) and treating z as constant, so that we obtain  

    y dx  - xdy  = 0 

 This implies       (1) 

 Putting y = 1, we obtain  

    x = f(z)   (2) 

and      (1 + z
2
) dx +   (1 + x

2
) dz  = 0 

which on integration gives  

    (x + z)/ (1 – xz) = c (3) 

Elimination of x from (2) and (3) gives  

    ( )
1

C z
f z

Cz





 

Thus from (1), the primitive is  

    
1

x C z

y Cz





. 

5.5 Differential  Inequations  

 The most important techniques in the theory of differential equations involve the ‘integration’ of 

differential inequalities.  The following integral inequality known as ‘Gronwall’s inequality’ is 

( )
x

f z
y

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fundamental in the study of ordinary differential equations. It is one of the simplest and most useful 

result involving an integral inequation. 

 In the following r, u, v, U, V are scalars while y, z, f, g are n–dimensional vectors. 

Theorem 5.5.1 (Gronwall’s Inequality) 

Statement Let u(t) and v(t) be two non-negative continuous functions defined on closed interval [a,b]. 

Let c be any non-negative constant. Then the inequality ( ) ( ) ( ) ,       for a 

t

a

v t c v s u s ds t b       

implies the inequality  

  

and, in particular, if c = 0, then v(t)  0. 

Proof Case I : When c > 0. 

  Let  V(t) =   (1) 

Then   V(a) = c  (2) 

and by hypothesis  

  v(t) ≤ V(t),   (3) 

and  

  V(t)  c > 0   on [a, b],  (4) 

as u and v are non-negative functions. Also from (1), we have, on [a, b],  

  V'(t)  = v(t) u(t)  

            V(t) u(t), 

using (3). This implies, using (4) 

( )  exp ( )               

t

a

v t c u s ds for a t b
 

   
 


( ) ( ) .

t

a

c v s u s ds 
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'( )

( ).
( )

V t
u t

V t
  (5) 

Integrating (5) over [a, t], we get  

  log V t
t

a
     ( )

t

a

u s ds   

which gives  

  log V(t) – log V(a)  ( )

t

a

u s ds   

Using V(a) = c, we have  

  log V(t)  - log c  ≤ ( )

t

a

u s ds . 

We can rewrite the above inequality as  

  log V(t)  ≤ log c  + log exp ( )

t

a

u s ds
 
 
 

 . 

Taking exponential on both sides of the above, we get  

  V(t)  ≤ c exp ( )

t

a

u s ds
 
 
 
 . (6) 

Replacing the left hand side of (6) by lesser term, as in (3), we get  

  v(t) ≤ V(t) ≤ c exp ( )

t

a

u s ds
 
 
 
  

or   v(t)  ≤ c exp ( )

t

a

u s ds
 
 
 
 , (7) 

which is the Gronwall’s inequality. 
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Case II When c = 0. Letting c   0
+ 

 in (7) we get the desired result.  

5.5.2  Restatement Another form of Gronwall’s inequality is given below.  

Let r(t) be continuous for t – t0 ≤   and satisfies the inequalities  

  0 ≤r(t) ≤  + 

0

( )

t

t

r s ds   

for some non-negative constants  and  . Then 

   0 ≤r(t) ≤  exp { t- t0}.  

Proof On taking c =  , t0 = a and u(t) =  in above theorem, the result follows immediately.  

Cor. 5.5.3 Let f(t, y) satisfies a Lipschitz condition with constant k for y  D and               t – t0≤ . 

Let y(t) and z(t) be solutions of problem  

   ( , )
dy

f t y
dt

   

 for t- t0 ≤  such that  

   y(t0) = y0,   z(t0) = z0,  (1) 

where y0, z0  D. Then  

   z(t) – y(t)   |z0 – y0| exp {kt - t0}. 

Proof Given that y(t) and z(t) are solutions of (1), the corresponding integral equations are:  

   

0 0

0 0( ) ( , ( )) , ( ) ( , ( )) ,

t t

t t

y t y f s y s ds z t z f s z s ds       (2) 

Subtracting, we see that  

   

0

0 0( ) ( ) [ ( , ( )) ( , ( ))] .

t

t

z t y t z y f s z s f s y s ds      (3) 
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Taking the norm of both sides and applying the Lipschitz condition, it follows that  

   

0

0 0( ) ( ) [ ( , ( )) ( , ( ))]

t

t

z t y t z y f s z s f s y s ds        

        

0

0 0 ( , ( )) ( , ( ))

t

t

z y f s z s f s y s ds     

  0 ( ) ( )z t y t   

0

0 0 ( ) ( )

t

t

z y k z s y s ds     

From Gronwall’s inequality, with r(t) = z(t) – y(t),  = z0 – y0 and  = k, the result follows 

immediately.  

Cor. 5.5.4 Let f(t,y) satisfies a Lipschitz condition for y  D and t – t0 . Then the initial value 

problem has a unique solution, that is, there is at most one continuous function y(t) which satisfies 

    ( , )
dy

f t y
dt

 ,  

    y(t0) = y0 

Proof Putting z0 = y0 in Cor. 5.5.3, we see that z(t) = y(t) for all t – t0 ≤ , which shows the 

uniqueness of the solution of initial value problem, whenever f(t, y) satisfies a Lipzchitz condition. 

Hence the result.  

5.6 The Comparison Theorems  

 Since most differential equations can not be solved in terms of elementary functions, it is 

important to compare the unknown solutions of one differential equation with the known solutions of 

another. i.e. compare functions satisfying the differential inequality  

   f '(x)  F(x, f(x)), 

with exact solution of the differential equation 
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   y' = F(x, y),  

which is a normal first order differential equation. The following theorems give such comparisons.  

Theorem 5.6.1 Let f(t, y) satisfies a Lipschitz condition for t  a. If the function u = u(t) satisfies the 

differential inequality. 

    ( , )       for  t  a
dy

f t y
dt

      (1) 

and v = v(t) is a solution of differential equation  

    ( , )
dy

f t y
dt

  (2) 

satisfying the initial conditions  

    u(a) = v(a) = c0 (3) 

then u(t) ≤ v(t) for t  a.  

Proof If possible, suppose that  

    u(t1) > v(t1) (4) 

for some t1 in the given interval. Let t0 be the largest t in the interval [a, t1] such that  

  u(t) ≤ v(t).  

Then  

  u(t0) = v(t0). 

Let   (t)  = u(t) – v(t) .  (5) 

Then   (t0) = 0,        (t1) > 0  (6) 

and   (t)   0 for [t0, t1].  (7) 

Also for t0 ≤ t ≤ t1, 
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  '(t) = u'(t) – v'(t)  

          ≤ f(t,u(t)) – f(t, v(t)),       using  (1) & (2).  

          ≤ Ku(t) – v(t),   (8) 

          = K (t),  

where K is the Lipschitz constant for the function f.  

Multiplying both sides of (8) by e
-Kt, 

we write  

   0  e
-Kt

{'(t) - K(t)} 

    σ(t) e .Ktd

dt

  

This implies 

      0 1σ(t) e 0   in  [t , t ]Ktd

dt

   (9) 

So, (t). e
-Kt

 is a decreasing function for [t0, t1].   

Therefore   (t) e
-Kt 

≤ (t0) 
0-Kt

e     for all t in [t0, t1] 

   0K(t - t )

0  σ(t) σ(t ) e     

   σ(t) 0     for all t in [t0, t1], using (6). 

     σ(t)  vanishes identically in [t0, t1], using (7). 

This contradicts the assumption that (t1) > 0. Hence, we conclude that  

    u(t) ≤ v(t)  

for all t in the given interval. 

This completes the proof  

Theorem 5.6.2 (Comparison Theorem) 
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Let u = u(t) and v = v(t) be solutions of differential equations  

   ( , ), ( , )
dy dz

U t y V t z
dt dt

   (1) 

respectively, where  

   U (t, y) ≤ V (t, y)   (2) 

in the strip a ≤ t ≤ b and U or V satisfies a Lipschtiz condition, and  

   u(a) = v(a).   (3) 

Then    u(t) ≤ v(t)             for all t  [a, b]. (4) 

Proof (i) Let V satisfies a Lipschitz condition. Since  

   ( , ) ( , ),
dy

U t y V t y
dt

   

the functions u(t) and v(t) satisfy the conditions of theorem 5.6.1 with V in place of f. Therefore, the 

inequality (4) follows immediately.  

(ii) If U satisfies a Lipschitz condition, the functions  

   f(t) = - u(t),  g(t) = - v(t)  (5) 

 satisfy the differential equations 

   ( , ),
du

U t u
dt

    

 and  

   ( , ),
dv

V t v
dt

    

     ≤ - U (t, -v),  using (2)  (6) 

 As  g(t)  is a solution of     
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    ( , )
dv

U t v
dt

    

and  f(t) is a solution of  

   ( , )
du

U t u
dt

   . 

 Therefore, by Theorem 5.6.1, we obtain the inequality 

  g(t) ≤ f(t)   for t  a  

   -g(t)  - f(t)   for t  a 

   v(t)  u(t)  for t  a 

   u(t) ≤ v(t)   for t  a 

 This completes the proof.  

Remark The inequality u(t) ≤ v(t) in this comparison theorem 5.6.2 can often be replaced by a strict 

inequality.  

Corollary 5.6.3 In theorem 5.6.2,  for any t1 > a, either     

 u(t1) < v(t1)   or   u(t)  v(t)         for a ≤ t ≤ t1 

Proof  By theorem 5.6.2, u(t) ≤ v(t) for all t > a.  (1) 

Let t1 > a be any value of t. 

If u(t1) is not less than v(t1), then u(t1) = v(t1). (2) 

Then, either u and v are identically equal for a ≤ t ≤ t1, or else  

   u(t0) < v(t0)  (3)  

for some t0 in the interval (a, t1).  Now, to prove that this else block will lead to a contradiction. 

Let 1(t) = v(t) – u(t),  for t  [a, t1]. (4) 

Then   1(t0) > 0,    (5) 
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and by theorem 5.6.2, 

   u(t) ≤ v(t)  for t  [a, t1] 

    1(t)  0.  for t  [a, t1]. (6) 

Further, for t  [a, t1] 

   1'(t)  =  v'(t) – u'(t) 

    = V (t, v(t)) – U (t, u(t)) 

      V (t, v(t)) – V (t, u(t)) (  U ≤ V given) 

      - K {v(t) – u(t)} 

    1'(t)    - K 1  (7) 

    (1' + K 1)   0.  

Hence          Kt Kt 

1 1 1e . t  e t  + K t   0,       

 using (7) for t  [a, t1]. This shows that the function (t) = e
kt

 1(t) is an increasing function on 

the interval [a, t1]. So  

   (t)  (t0)      for t  [t0, t1] 

        e
kt

 1(t)   0Kt
e 1(t0) 

       1(t)   1(t0) 
0K(t-t )-e  > 0  ,( using (5)) 

       1(t) >  0 in [t0, t1] 

       v(t) – u(t) > 0 in [t0, t1] 

     v(t) > u(t) in [t0, t1]  [a, b], 

which is a contradiction. Hence, u and v are identical for a ≤ t ≤ t1. This completes the proof.  
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Cor. 5.6.4 In theorem 5.6.2, assume that U as well as V, satisfies a Lipschitz conditions and, instead of 

u(a) = v(a), that u(a) < v(a).  

Then  

  u(t) < v(t)  for  t > a.  

Proof  The proof will be by contradiction. 

If we had u(t)  v(t) for some t > a, there would be a first t = t1 > a, where 

   u(t)  v(t).    (1) 

We define two functions 

   y = (t) = u(-t),  

   z  = (t) = v(-t).   (2) 

Then  and   satisfy the differential equations 

  ( , ), ( , )
dy dz

U t y V t z
dt dt

       (3) 

and the respective initial conditions,  

  (-t1) = (- t1).   (4)  

Since 

  -U (-t, y)  -V (-t, y),    

we can apply theorem 5.6.2 in the interval [-t1, -a], knowing that the function   –U (-t, y) satisfies a 

Lipschitz condition. So, by theorem 5.6.2, we conclude that 

    (t)   (t) in [-t1, -a] 

    (-a)  (-a) 

   u(a)  v(a),    (5) 
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which is a contradiction (to the given assumption that u(a) < v(a)). Therefore, the assumption that u(t)  

v(t) is wrong. Thus,  

  u(t) < v (t)                  for t > a.  

Hence the result.  

5.7    Check Your  Progress 
 

Q.1 Define Pfaffian (Total) differential equations. 

Q.2 State Gronwall’s Inequality. 

Q.3 Verify that the following equations are integrable and find their primitives:  

 (a) 2y(a –x) dx + [z – y
2
 + (a – x)

2
] dy – y dz = 0 

 (b) zy
2
dx + zx

2
dy – x

2
y

2
dz = 0 

 (c) (y
2
 + yz + z

2
) dx + (z

2
 + zx + x

2
)dy + (x

2
 + xy + y

2
)dz = 0 

 (d) yz dx + xz dy + xy dz = 0 

5.8  Summary 

In this chapter, after proving some preliminary results about Pfaffian differential equations, the 

criterion for determining the condition of integrability of such equations is explained. Some methods of 

solutions of Pfaffian differential equations in three variables are also discussed. Some theorems for 

differential inequations along with Gronwall inequality are presented at the end of chapter.  

5.9 Keywords 

Total differential equations, Integrability, Comparison theorems, Gronwall inequality.  

5.10   Self-Assessment Test  
 

Verify that the following equations are integrable and find their primitives:  

Q.1  (1 + yz) dx + x (z – x) dy – (1 + xy) dz = 0. 



Ordinary Differential Equations-I  MAL-514 

DDE, GJUS&T, Hisar  146 |  

 

Q.2 y (x + 4) (y + z) dx – x (y + 3z) dy + 2xy dz = 0. 

Q.3 yz dx + (x
2
y – zx) dy + (x

2
z – xy) dz = 0. 

Q.4. 2yz dx – 2xz dy – (x
2
 – y

2
) (z – 1) dz = 0. 

Q.5 y(x + y) (z + y) dx  - x (y + z
2
) dy + 2xy dz = 0. 

Q.6 (2xyz + z
2
) dx + x

2
zdy + (xz + 1) dz = 0. 

 

5.11   Answers to check your progress  
 

Ans.3 (a) ( ).x yz c y xz    

(b) 
1 1

log .z c
x y
    

(c) .
xy yz zx

c
x y z

 


 
 

(d) .xy c  
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6.0 Learning  Objectives  

In this chapter, the reader is made familiar with Sturm theory, Sturm separation and comparison 

theorems describing the location of roots of homogeneous second order linear differential equations. 

Riccati Equations and Pruffer transformation are also important parts of this chapter. 

6.1 Introduction  

 We know that a second order differential equation can be expressed in the form   

   ( ) ( ) 0,
d dx

P t Q t x
dt dt

 
  

 
 (1) 
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(called self adjoint form) where P(t) has continuous derivate, Q(t) is continuous and P(t) > 0 on a ≤ t ≤ b. 

We shall need a well-known theorem on point sets known as the Bolzano-Weierstrass theorem. Suppose 

E is a set of points on the t axis. A point t0 is called a limit point of E if there exists a sequence of distinct 

points t1, t2, t3… of E such that 0lim  n
n

t t


 . The Bolzano-Weierstrass theorem states that every bounded 

infinite set E has at least one limit point.  

Theorem A If the function  is a solution of the homogeneous equation  

   
1

0 1 1
( ) ( ) ...... ( ) 0

n n

nn n

d x d x
a t a t a t x

dt dt




     

Such that 

  (t0) = 0,     '(t0) = 0, ……,  
(n-1)

(t0) = 0,  

where t0 is a point of an interval a ≤ t ≤ b on which the co-efficients a0, a1, …, an are all continuous and 

a0(t)  0. Then (t) = 0 for all t such that a ≤ t ≤ b.  

Theorem B Let f1, f2, …, fn be n solutions of the homogeneous linear differential equation 

1

0 1 1
( ) ( ) ...... ( ) 0

n n

nn n

d x d x
a t a t a t x

dt dt




    on [a, b]. Then these n solutions are linearly dependent on [a, b] 

iff  1 2W( , ,.., )( ) 0,   [ ,  ]nf f f t t a b   , where 1 2W( , ,.., )( )nf f f t  denotes the Wronskian of solutions f1, 

f2,…., fn at t. 

6.2 Sturm Theory 

Theorem 6.2.1 

1. Let f  be a solution of   

   ( ) ( ) 0,
d dx

P t Q t x
dt dt

 
  

 
  

having first derivative f ' on a ≤ t ≤ b,  (1) 
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2. and let f has an infinite number of zeros on a  t  b.  

Conclusion Then f(t) = 0 for all t on a  t  b.   

Proof Since f has an infinite number of zeros on [a, b], by the Bolzano-Weierstrass theorem the set of 

zeros has a limit point t0  [a, b]. Thus there exists a sequence {tn} of zeros which converges to t0 (where 

tn  t0). Since f is continuous 
0

0lim  f(t) = f(t )
t t

, where t t0 through any sequence of points on [a, b]. Let t 

t0 through the sequence of zeros {tn}. Then  

     
0

0lim  ( ) 0 ( )
t t

f t f t


  . 

Now since f '(t0) exists,  

   f '(t0) = 
0

0

0

( ) ( )
lim  
t t

f t f t

t t




 , 

where t  t0 through the sequence {tn}. For such points  

   0

0

( ) ( )
0

f t f t

t t





 and thus f '(t0} = 0 

Thus f is a solution of Equation (1) such that f(t0) = f '(t0) = 0. Hence, using theorem A  

   f(t) = 0    for all t on    a  ≤ t ≤ b.  

 Theorem 6.2.2 Abel’s Formula    

Hypothesis Let f and g be any two solutions of  

   ( ) ( ) 0,
d dx

P t Q t x
dt dt

 
  

 
 (1) 

on the interval a ≤ t ≤ b.  

Conclusion Then for all t on a ≤ t ≤ b,  

   P(t) [f(t)g'(t) – f '(t)g(t)] = k, (2) 
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where k is a constant.  

Proof Since f and g are solutions of (1) on  a ≤ t ≤ b, we have  

      ( ) '( ) ( ) ( ) 0
d

P t f t Q t f t
dt

   (3) 

and  

    (4) 

for all t  [a, b]. Multiply (3) by –g(t) and (4) by f(t) and adding  

    (5) 

Integrating (5) from a to t, we obtain  

( ) ( ) '( ) ( ) '( ) ( ) ( ) '( ) ( ) ( ) '( ) '( ) 0,
t t

a a

t t
f s P s g s P s g s f s ds g s f s P s P s f s g s ds

a a
      

or  

 P(t)[f(t)g'(t) – f '(t)g(t)] = P(a)[f(a)g'(a) – f '(a)g(a)] = k (constant) and thus we have Abel’s 

formula (2).  

Theorem 6.2.3 A.  Hypothesis  Let f and g be two solutions of  

   ( ) ( ) 0
d dx

P t Q t x
dt dt

 
  

 
 (1) 

such that f and g have a common zero on a ≤ t ≤ b.  

Conclusion Then f and g are linearly dependent on a ≤ t ≤ b.  

B. Hypothesis  Let f and g be nontrivial linearly dependent solutions of Equation (1) on a ≤ t ≤ b, and 

suppose f(t0) = 0, where t0 is such that a ≤ t0 ≤ b. 

Conclusion Then g(t0) = 0  

 ( ) '( ) ( ) ( ) 0
d

P t g t Q t g t
dt

 

   ( ) ( ) '( ) ( ) ( ) '( ) 0
d d

f t P t g t g t P t f t
dt dt

 
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Proof  A. Abel’s formula is  

   P(t)[f(t)g'(t) – f '(t)g(t)] = k (2) 

Let t0  [a, b] be the common zero of f and g, then f(t0)= g(t0) = 0. Letting t = t0 in the Abel’s formula, 

we obtain k = 0. Thus 

   P(t)[f(t)g'(t) – f '(t)g(t)] = 0 for t  [a, b]. 

Since we have assumed throughout that P(t) > 0 on a ≤ t ≤ b, the quantity in brackets above must be zero 

for all t on a ≤ t ≤ b. But this quantity is W(f, g)(t). Thus by using the theorem B, the solution f and g are 

linearly dependent on a ≤ t ≤ b.  

B. Since f and g are linearly dependent on a ≤ t ≤ b, there exist constants c1 and c2 not both zero, such 

that 

   c1f(t) + c2g(t) = 0, (3) 

for all t on a ≤ t ≤ b. Now given that neither f nor g is zero for all t on a ≤ t ≤ b. If      c1 =0, then c2 g(t) = 

0 for all t on a ≤ t ≤ b. Since g is not zero for all t on [a, b], we must have c2 = 0, which is a contradiction. 

Thus c1  0, and likewise c2  0. Thus neither c1 nor c2 in (3) is zero. Since f(t0) = 0, letting t = t0 in (3) 

we have c2 g(t0) = 0. Thus g(t0) = 0. 

Example 6.2.4 The equation  
2

2
0

d x
x

dt
   

is of the type (1) is above theorem, where P(t) = Q(t) = 1 on every interval a ≤ t ≤ b. The linearly 

dependent solutions are A sint and B sint, which have the common zeros t =  n ( n= 0, 1, 2…..) and no 

other zeros.  

6.3 The Separation and Comparison Theorems 

Theorem 6.3.1 Sturm Separation Theorem  

Hypothesis Let f and g be real linearly independent solutions of  
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   ( ) ( ) 0
d dx

P t Q t x
dt dt

 
  

 
     (1) 

on the interval  a ≤ t ≤ b. 

Conclusion  Between any two consecutive zeros of f (or g)  there is precisely one zero of g (or f).  

Proof Let t1 and t2 be two consecutive zeros of f on [a, b]. Then by Theorem 6.3, Part A, g(t1)  0 and 

g(t2)  0. Now assume that g has no zero in the open interval                 t1 < t < t2. Then since the 

solutions f and g have continuous derivatives on [a, b], the quotient f/g has a continuous derivative on the 

interval t1 ≤ t ≤ t2. Further, f(t)/g(t) is zero at the endpoints of this interval. Thus by Rolle’s theorem there 

exists , where t1 <  < t2, such that  
( )

0
( )

t

d f t

dt g t


 
 

 
, 

but   
2

( ) ( , )( )
;

( ) [ ( )]

d f t W g f t

dt g t g t

 
 

 
 

and since f and g are linearly independent on a ≤ t ≤ b.  

  W(f,g) (t)  0 on t1< t < t2 , i.e.   

 
( )

0
( )

d f t

dt g t

 
 

 
         on t1< t < t2. 

This contradiction shows that g has at least one zero in t1< t < t2 . 

 Now suppose g has more than one zero in t1< t < t2, and let t3 and t4 be two such consecutive zeros 

of g. Then interchanging f and g and using the same arguments we can show that f must have at least one 

zero t5 in the open interval              t3 < t < t4. Then t1 < t5 < t2 and so t1 and t2 would not be consecutive 

zeros of f, which is a contradiction to our assumption concerning t1 and t2. Thus g has precisely one zero 

in the open interval t1 < t < t2.    
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Figure 

 We may restate Theorem 6.3.1 in the following form: The zeros of one of two real linearly 

independent solutions of Equation (1) separate the zeros of the other solution (see figure).  

Example 6.3.1.1 We have already observed that the equation 

      
2

2
0

d x
x

dt
   

is of the type (1) in above theorem. The functions f and g defined, respectively, by   f(t) = sin t and g(t) = 

cos t are linearly independent solutions of this equation. Between any two consecutive zeros of one of 

these two linearly independent solutions, there is precisely one zero of the other solution. We know that 

zeros of f(t) are t = n, n = 0, 1, 2, …. and zeros of g(t) are t = (2n+1) ,  n = 0, 1, 2,....
2


   are 

separated by each other.  

Theorem 6.3.2 Sturm’s Fundamental Comparison Theorem 

Hypothesis On the interval a ≤ t ≤ b,  

1. Let 1 be a real solution of  

     1( ) ( ) 0
d dx

P t Q t x
dt dt

 
  

 
 (1) 

2. Let 2 be a real solution of  
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     2( ) ( ) 0
d dx

P t Q t x
dt dt

 
  

 
 (2) 

3. Let P has a continuous derivative and be such that P(t) > 0 and let Q1 and Q2 be continuous and 

such that Q2(t) > Q1(t). 

Conclusion If t1 and t2 are successive zeros of 1 on [a, b], then 2 has at least one zero at some point 

of the open interval t1 < t < t2. 

Proof Assume that 2 does not have a zero on the open interval t1 < t < t2. Then without loss in generality 

we can assume that 1(t) > 0 and 2(t) > 0 on t1 < t < t2. By hypothesis, we have 

            1 1 1( ) ( ) ( ) ( ) 0
d

P t t Q t t
dt

     (3) 

     2 2 2( ) ( ) ( ) ( ) 0
d

P t t Q t t
dt

     (4) 

for all t[a, b]. Multiply (3) by 2(t) and (4) by 1(t) and subtract to obtain 

   2 1 1 2 2 1 1 2( ) ( ) ( ) ( ) ( ) ( ) [ ( ) ( )] ( ) ( ).
d d

t P t t t P t t Q t Q t t t
dt dt

            (5) 

Since  

    2 1 1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) { ( )[ ( ) ( ) ( ) ( )]}.
d d d

t P t t t P t t P t t t t t
dt dt dt

              

Then (5) reduces to  

 1 2 1 2 2 1 1 2{ ( )[ ( ) ( ) ( ) ( )]} = [Q (t) - Q (t)] ( ) ( ).
d

P t t t t t t t
dt

        

Integrating it from t1 to t2, we obtain  

 
2 2

1 1

1 2 1 2 2 1 1 2{ ( )[ ( ) ( ) ( ) ( )]} [ ( ) ( )] ( ) ( )

t t

t t

d
P t t t t t dt Q t Q t t t dt

dt
           
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or  
2

2

1

1

1 2 1 2 2 1 1 2( )[ ( ) ( ) ( ) ( ) [ ( ) ( )] ( ) ( ) .

t
t

t

t

P t t t t t Q t Q t t t dt          (6) 

Since 1 1 1 2( ) ( ) 0,t t    the equality (6) becomes  

 
2

1

2 1 2 2 2 1 1 1 2 1 2 1 1 2( ) ( ) ( ) ( ) ( ) ( ) [ ( ) ( )] ( ) ( ) .

t

t

P t t t P t t t Q t Q t t t dt          (7) 

 By hypothesis, P(t2) > 0.  Since 1(t2) = 0 and 1(t) > 0 on t1 < t < t2, we  have '1(t2) < 0. Since 

2(t) > 0 on t1 < t < t2, we have 2(t2)  0. Thus P(t2) '1(t2)2(t2) ≤ 0. Similarly we have P(t1) '1(t1)2(t1) 

 0. Thus, the left member of (7) is not positive.  

 But by hypothesis Q2(t) – Q1(t)  > 0 on t1 ≤ t ≤ t2, and so the right member of (7) is positive. Thus 

the assumption that 2 does not have a zero on the open interval t1 < t < t2, leads to a contradiction, and 

so 2 has a zero at some point of this open interval. 

 Hence the proof of the theorem.  

 As a particular case of importance, suppose that the hypotheses of Theorem 6.5 are satisfied and 

that t1 is a zero of both 1 and 2. Then if t2 and  are the “next” zeros of 1 and 2, respectively, we must 

have  < t2.  

 

 

 

 

 

 

 

Figure  
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Example 6.3.2.1 Consider the equation 

     

and  

     

where A and B are constants such that B > A > 0. The functions 1 and 2 defined respectively by 1(t) = 

sin At and 2(t) = sin Bt are real solutions of these respective equations. Consecutive zeros of sin At are   

     

Then by theorem 6.5, we are assured that sin Bt has at least one zero n such that  

     

In particular, t = 0 is zero of both sin At and sin Bt. The “next” zero of sin At is /A, while the “next” 

zero of sin Bt is /B; and clearly  /B < /A. This verifies the results of comparison Theorem.  

6.4 Non-Oscillatory and Oscillatory functions 

A real valued function f(t) defined and continuous in an interval [a, b] is said to be non-oscillatory in [a, 

b], if f(t) has not more than one zero in [a, b].  

If f(t) has at least two zeros in [a, b], then f(t) is said to be oscillatory in [a, b]. 

Examples: (6.4.1)     Consider the function 

    f(t) = Ae
-t
 + Be

-t 

for t  0, A and B are constants, then f(t) is non-oscillatory.  

  (6.4.2)       Let     f(t) = sin t, t  0. 

2
2

2
0

d x
A x

dt
 

2
2

2
0

d x
B x

dt
 

( 1)
         ( 0,  1,  2,....)

n n
and n

A A

 
  

( 1)
< n <       ( 0,  1,  2,....)

n n
n

A A

 



  
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 Then   f(t) is oscillatory in [0, 4].  

6.4.3 Non-Oscillatory and Oscillatory differential equations  

A second order differential equation 

    
2

2
( )  + ( ) ( ), 0

d u du
p t q t y h t t

dt dt
    

is called “non-oscillatory” if every solution u = u(t) of it, is non-oscillatory. Otherwise, differential 

equation is called oscillatory. 

Example 6.4.4  u" + u = 0 is oscillatory. 

Its general solutions is  

    u(t)  = A cos t + B sin t, t  0. 

W.l.o.g., we  can assume that both A and B are non-zero constants, otherwise, u(t) is trivially oscillatory.  

In that case, u(t) has a zero at  

   t = n + tan
-1 

(A/B), for n = 0, 1, 2, 3, …..  

So, this equation is oscillatory. 

Example 6.4.5  Consider the linear equation  

    u " – u = 0,   for t = 0 

Its general solution is u(t) = Ae
t
 + Be

-t
, A & B are constants. This solution is non-oscillatory. Hence, this 

equation is non-oscillatory.  

Definition 6.4.6 Let f(t) and g(t) be two real valued functions defined and continuous in some interval [a, 

b]. Then f(t) is said to oscillate more rapidly than g(t) if the number of zeros of f(t) in [a, b] exceed the 

number of zeros of g(t) in [a, b] by more than one.  

Example 6.4.7 Let f(t)   = sin 2t         in [0, 4], 

   g(t)  = sin t           in [0, 4]. 
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Then zeros of f(t) are only half as far apart as the zeros of g(t). So  f(t) oscillates more rapidly than g(t) in 

the interval [0, 4]. 

6.5 Riccati Equations  

Before we give the formal definition of Riccati equations, a little introduction may be helpful. Consider 

the first order differential equation  

    = ( , ).
dy

f x y
dx

 

If we approximate f(x,y), while x is kept constant, we will get  

   f(x, y) = P(x) + Q(x)y + R(x)y
2
 + …….  

If we stop at y, we will get a linear equation. Riccati looked at the approximation to the second degree: 

he considered equations of the type  

    
2( ) ( ) ( )

dy
P x Q x y R x y

dx
   . 

Such type of equations bear his name, Riccati equations. They are nonlinear and do not fall under the 

category of any of the classical equations. In order to solve a Riccati equation, one will need a particular 

solution. Without knowing at least one solution, there is absolutely no chance to find any solutions to 

such an equation. Indeed, let y1 be a particular solution of  

    
2 = ( ) ( ) ( )

dy
P x Q x y R x y

dx
  . 

Consider the new function z defined by  

     
1

1
z

y y



 

Then     1 = - ( ( ) 2 ( )) ( )
dz

Q x y R x z R x
dx

   

which is a linear equation satisfied by the new function z. Once it is solved, we go back to y via the 

relation  

http://sosmath.com/diffeq/first/lineareq/lineareq.html
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Example 6.5.1 Solve the equation  

    
22 ,

dy
y y

dx
     

knowing that y1 = 2 is a particular solution.  

Solution We recognize a Riccati equation. First of all we need to make sure that y1 is indeed a solution.  

 Consider the new function z defined by 

     
1

2
z

y



 

Then we have  

     
1

2y
z

   

which implies  

     
2

'
'  - 

z
y

z
  

Hence, from the equation satisfied by y, we get  

    

2

2

' 1 1
2 2 2

z

z z z

   
         

   
 

Then easy calculations give  

    
2 2

' 3 1z

z z z
   . 

Hence  

z' = -3z -1.  

This is a linear equation. The general solution is given by  

1

1
y y

z
 

http://sosmath.com/diffeq/first/lineareq/lineareq.html
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3

3

3

1/ 3 1

3

x
x

x

e C
z Ce

e

 
     

Therefore, we have  

    
3

1
2

1
 - 

3

x

y

Ce

 



. 

Note If one remembers the equation satisfied by z, then the solutions may be found a bit faster. Indeed 

in this example, we have P(x) = -2, Q(x) = -1, and R(x) = 1. Hence the linear equation satisfied by the 

new function z, is  

  1( ( ) 2 ( )) ( ) ( 1 4) 1 3 1
dz

Q x y R x z R x z z
dx

             

Example 6.5.2 Check that y1 = sin(x) is a solution to  

    
2 2 22cos ( ) sin ( )

2cos( )

dy x x y

dx x

 
  

Then solve the IVP  

    

2 2 22cos ( ) sin ( )

2cos( )

(0) 1

dy x x y

dx x

y

  



  

 

  

Solution Check that sin(x) is indeed a particular solution of the given differential equation. We also 

recognize that the equation is of  Riccati type. Set  

    
1

sin( )
z

y x



 

which gives   

    
1

sin( )y x
z

  ,   
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Hence  

    
2

'
' cos( )

z
y x

z
     

Substituting into the equation gives  

    

2

2 2

2

1
2cos ( ) sin ( ) sin( )

'
cos( ) .

2cos( )

x x x
z z

x
z x

 
   

    

 

Easy algebraic manipulations give  

 

    
2

2 2

1 1
2sin( )

' sin( ) 1 1 1

2cos( ) cos( ) 2cos( )

x
z xz z

z x x z x z

 
 

      

Hence  

    
sin( ) 1

'  - 
cos( ) 2cos( )

x
z z

x x
   

This is the linear equation satisfied by z. The integrating factor is  

   

sin( )

(cos( ))cos( ) 1
( ) e sec( ).

cos( )

x
dx

In xxu x e x
x


     

The general solution is  

   

21/ 2 sec ( ) 1 1
cos( ) tan( ) sin( ) cos( ).

( ) 2 2

x dx C
z x x C x C x

u x

   
       

 


 

Now go back to the original function y. We have  

 

http://sosmath.com/diffeq/first/lineareq/lineareq.html
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1

sin( )
1

sin( ) cos( )
2

y x

x C x

 

 

. 

The initial condition y(0) = -1 implies 
1

1
C
   or C= -1. Therefore, the solution to the IVP is  

         
1

sin( )
1

sin( ) cos( )
2

y x

x x

 

 

. 

6.5.3 Relationship between Riccati Equation and linear differential  

          equation of second order   

 The importance of Riccati Equation in theory of differential equations is due to the following 

relationship between it and the general linear differential equation of second order.  

Consider the general Riccati Equation  

    
2( ) ( ) ( )

dy
Q x y R x y P x

dx
    (1) 

Let  us make the transformation  

    y =  
1 'du u

Ru dx Ru
  (2) 

The resulting equation is the following linear differential equation of second order  

   
2

2

2
( ' ) 0

d u du
R R QR PR u

dx dx
     (3) 

Conversely, there corresponds to the general homogenous linear differential equation of second order a 

Riccati equation.  

Given the equation  
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2

2
( ) ( ) ( ) 0

d u du
A x B x C x u

dx dx
    (4) 

We make the transformation  

    ( )
du

Ry u
dx

  (5) 

and obtain the following Riccati equation  

   
2'dy R B C

y Ry
dx R A AR

 
    
 

. (6) 

Comparing (6) with (1), we get  

    
'( ) ( ) ( )

( ) = , ( )
( ) ( ) ( ) ( )

R x B x C x
Q x P x

R x A x A x R x


  . (7) 

Since R(x) is an arbitrary function, we can determine it so that Q(x) is zero. In this case, (6) assumes the 

simpler form  

    
2dy C

Ry
dx AR


  , (8) 

where  

   R(x)   =  
( )

exp .
( )

B x
dx

A x

 
 
 
  

 

6.6 Prüfer Transformation/Polar Co-ordinate  

         Transformation  

 This transformation is applicable to linear homogeneous second order differential equations. It 

yields an equivalent system of two first order differential equations. This transformation changes an 

equation from Liouville normal form to two successive ordinary differential equations. It is often used to 

obtain information about the zeros of solutions.  
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The  Prüfer System 

 We will develop a method called phase plane method to seek the solution of Sturm-Liouville 

equation by using the Prüfer substitution. It yields the phase and the amplitude of the sought after 

solution to Sturm- Liouville equation.  

Let u(x) 0  be a real valued solution of the Sturm-Liouville equation. 

The method to be developed applies to any differential equation having the form  

  ( ) ( ) 0,     a < x < b
d du

P x Q x u
dx dx

 
  

 
. (1) 

Here,   0 < P(x),  P'(x) and Q(x) are continuous.  

We do this by introducing the ``phase'' and the ``radius'' of a solution u(x). This is done in three steps.  

A)  First apply the Prüfer substitution 

P(x)u'(x) = r(x) cos (x);  u(x) = r(x) sin (x)    (2) to the quantities in 

(1). For this, we introduce the new dependent variables r and  as defined by the formulae  

      
2 2 2 2 u

r  u + P ( ') ; θ = arctan .
Pu'

u  (3) 

 

Figure The Poincaré phase plane of the second order linear differential equation is spanned by the 

amplitude u and its derivative u' (multiplied by the positive coefficient P). A solution to the differential 

equation is represented by an x-parameterized curve. The (Prüfer) phase is the polar angle . 

http://www.math.ohio-state.edu/~gerlach/math/BVtypset/node69.html#eq:_#eq:_
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(Without loss of generality one may always assume that u(x) is real. Indeed, if u(x) were a complex 

solution, then it would differ from a real one by a mere complex constant.) A solution u(x) can thus be 

pictured in this Poincaré plane as a curve parameterized by the independent variable x.  

The transformation  

    (Pu', u)  (r,) 

is non-singular for all r  0. Furthermore, we always have r > 0 for any non-trivial solutions. Because if 

r(x) = 0, i.e., u(x) = 0 and u'(x) = 0 for some particular x then by the uniqueness theorem for second 

order linear o.d.e. u(x) = 0 x, i.e., we have the trivial solution.  

B)  Second, obtain a system of first order o.d.e. which is equivalent to the given differential equation 

(1).  

(i) Differentiate the relation  

   
Pu'

cot θ = 
u

 

(If u = 0, then we differentiate 
u

tan θ = 
Pu'

 instead. This yields the same result.)  

One obtains  

    
2

2

dθ (Pu') Pu'
- cosec θ =  - u'

dx u u


 

    
2

2

1 cos θ
=  - Q - ,

P sin θ
 (using (1) & (2)). 

or  

  2 2dθ 1
 = Q(x) sin θ +  cos θ  F(x,θ)
dx P(x)

  (4) 

This is Prüfer's differential equation for the phase, the Prüfer phase.  

(ii)  Differentiate the relation  

    r
2
  = u

2
 + (Pu')

2 
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and obtain  

   
dr

r = uu'  + (Pu') (Pu') '
dx

 

    
u

=   Pu'  -  Pu' Qu 
P

 

    
r sinθ

=   r cosθ - r cosθ Q r sinθ
P

 

or  

  
dr 1 1

 =    - Q(x) r sin 2θ
dx 2 P(x)

 
 
 

. (5) 

This is Prüfer's differential equation for the amplitude.  

C)  Third, solve the system of Prüfer equations (4) and (5). Doing so is equivalent to solving the 

originally given equation (1). Any solution to the Prüfer system determines a unique solution to the 

equation (1), and conversely. This system is called the Prüfer system associated with the self adjoint 

differential equation (1). Of the two Prüfer equations (4) and (5), the one for the phase (x) is obviously 

much more important, it determines the qualitative, e.g. oscillatory, behaviour of u(x). The feature which 

makes the phase equation so singularly attractive is that it is a first order equation which also is 

independent of the amplitude r(x). The amplitude r(x) has no influence whatsoever on the phase function 

(x).  

Once (x) is known from (4), the Prüfer amplitude function r(x) is determined by integrating (5).  

One obtains  

  
1 1

 r(x) = K exp  -Q(x)  sin 2θ(x) dx
2 P(x)

x

a

 
 
 

  

where K = r(a) is the initial amplitude.  

Note  Each solution to the Prüfer system (4) and (5), depends on two constants: 

  the initial amplitude K = r(a),  

http://www.math.ohio-state.edu/~gerlach/math/BVtypset/node69.html#eq:__#eq:__
http://www.math.ohio-state.edu/~gerlach/math/BVtypset/node69.html#eq:___#eq:___
http://www.math.ohio-state.edu/~gerlach/math/BVtypset/node69.html#eq:_#eq:_
http://www.math.ohio-state.edu/~gerlach/math/BVtypset/node69.html#eq:_#eq:_
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  the initial phase   =  (a). 

2. Changing the constant K just multiplies the solution u(x) by a constant factor. Thus the zeros of 

u(x) can be located by studying only the phase differential equation, 

    ( ,  )
d

F x
dx


 .   

Vibrations, oscillations, wiggles, rotations and undulations are all characterized by a changing phase. If 

the independent variable is the time, then this time, the measure of that aspect of change which permits 

an enumeration of states, manifests itself physically by the advance of the phase of an oscillating system.  

6.6.1 Crux. The phase of a system is the most direct way of characterizing its oscillatory nature. For a 

linear 2
nd

 order o.d.e., this means the Prüfer phase (x), which obeys the first order differential equation.   

  2 21
( ) sin  cos ( ,  )

( )

d
Q x F x

dx P x


       

It is obtained from the second order equation  

   ( ) ( )  ( )  0
d d

P x Q x u x
dx dx

 
  

 
  

 

by the Prüfer substitution  

  ( ) ( )sin ( )     '( )  ( ) cos ( )u x r x x Pu x r x x    

These equations make it clear that the zeros and the oscillatory behavior of u(x) are controlled by the 

phase function (x). 

Example 6.6.2 Consider the linear second order homogeneous ordinary differential equation  

  x u''  - u'  + x
3
 u = 0.  (1) 

It can be written in Liouville normal form as  
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1

0,
d du

xu
dx x dx

 
  

 
 (2) 

Here P(x) = 
1

x
,    Q(x)  =  x.    (3) 

Therefore, the first equation of Prüfer system becomes  

  
2 2cos θ sin θ

d
x x x

dx


   . (4) 

Solving it, we obtain  

 (x)  =   
2x

 + C,
2

      (5) 

where C is an arbitrary constant.  

Then, the second differential equation of the Prüfer system gives  

   
1

sin  2θ 0
2

dr
x x r

dx
     

Integrating  

 r(x)  =  constant  =  r(a)   (let)   (6) 

Thus, we conclude from the Prüfer transformation, that the solution u(x) = r sin, now becomes   

 
2

( )    ( )sin
2

x
u x r a C

 
  

 
. (7) 

Find out r(a) from  (7) as 
2

( )
( )  

sin
2

u a
r a

a
C


 

 
 

, 

Then, from (7) we get  

2

2

( ) sin
2

( )  

sin
2

x
u a C

u x
a

C

 
 

 
 

 
 

. 
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as the solution of given equation (1). 

6.6.3 Lagrange Identity   

Consider the pair of differential equations.  

  ( ) ( ) ( ) ( ),
d du

p t q t u t f t
dt dt

 
  

 
 (1) 

   ( ) ( )v( ) ( ),
d dv

p t q t t g t
dt dt

 
  

 
 (2) 

where f  = f(t) and g = g(t) are continuous functions on interval I. Multiplying the second relation (2) by 

u(t), first (1) by v(t) and subtracting the results, we obtain  

  ( ) .
d dv du

p t u v gu fv
dt dt dt

  
    

  
 (3) 

The relation (3) is called the Lagrange identity. Its integrated form  

  [  (  ' ' ] ( )
t

t

a
a

p u v u v gu fv ds   , (4) 

where [a,  t]   I, is called Green’s formula.  

6.7    Check Your  Progress 
 

Q.1 Prove that zeros of two linearly independent solutions of a 2
nd

 order linear differential equation  

are separated. 

Q.2 Prove that between any two consecutive zeros of sin 2 cos2x x , there is precisely one zero of 

sin 2 cos2 .x x  

Q.3      Give an example of two differential equations through which verify Sturm’s  

            fundamental comparison theorem.  

Q.4      Find a one-parameter family of solutions of the Riccati equation: 

 
2(1 ) (2 1) ;

dy
x y x y x

dx
      given solution ( ) 1.f x   

Q.5      Find a one-parameter family of solutions of the Riccati equation: 
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2 3 28 4 ( 1) (8 4 1);

dy
xy x x y x x

dx
        given solution ( ) .f x x  

6.8 Summary 

Some basic results of Sturm theory are presented for the self adjoint form of second order 

equation. Sturm separation and fundamental comparison theorems are proved, with illustrations. Riccati 

equations are solved and a relationship between the general linear differential equation of second order 

and Riccati equation is defined. In concluding part of the chapter, phase-plane method is developed to 

find out the solution of Sturm-Liouville equation, using the Prüffer substitution.  

6.9 Keywords  

Sturm theory, Zeros of solutions, Abel’s formula, Riccati equation, Prüffer transformation. 

6.10   Self-Assessment Test  
 

Q.1 Solve the Riccati  equation 

2 23 4 4 .
dy

x y y x x
dx

     

Q.2   Solve the Riccati  equation 

2 1;
dy

y xy
dx

    given solution is ( ) .f x x  

Q.3 Explain Prüffer Transformation  and hence solve  
2

3

2
0.

d y dy
x x y

dx dx
    

 

6.11   Answers to check your progress  
 

Ans.4 
1( 2 ) 1.xy x ce      

Ans.5  
22 1(2 ) .xy ce x     
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7.0 Learning Objectives 

The main purpose of this chapter is to present the essential concepts and properties of Sturm-Liouville 

boundary value problems. These concepts are frequently employed in the application of differential 

equations to physics and engineering. 
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7.1 Introduction 

In this chapter, we shall consider special kind of boundary value problems known as Sturm 

Liouville problems. These problems arise naturally, for instance, when separation of variables is applied 

to the wave equation, the potential equation or the diffusion equation. The study of these types of 

problems will introduce us to several important concepts including characteristic values, characteristic 

functions, orthogonality and orthonormality of functions, which are very useful in many applied 

problems. 

7.2 Boundary Value Problems  

The problems that involve both a differential equation and one or more supplementary conditions, which 

the solution of given differential equation must satisfy, are called boundary value problems. If all the 

associated supplementary conditions relate to one x-value, the problem is called an initial-value problem 

(or one point boundary value problem). If the conditions relate to two different x-values, the problem is 

called a two-point boundary value problem (or simply a boundary value problem).  

Example 7.2.1  Solve  the equation 

   
2

2
0

d y
y

dx
  ,          y(1) = 3,                    y'(1) = -4 . 

This problem consists of finding a solution of the given differential equation which assumes the 

value 3 at x = 1 and whose first derivative assumes the value -4 at x = 1. Both these conditions relate to 

one x-value, namely x = 1. Thus, this is an initial value problem and has a unique solution.  

Example 7.2.2  Solve the equation 

  
2

2
0

d y
y

dx
  ,          y(0) = 1,  5

2
y

 
 

 
   

 In this problem, we again want a solution of the same differential equation, but this time, the 

solution must assume the value 1 at x = 0 and 5 at  = .
2

x


 That is, the conditions relate to the two 
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different x values, 0 and 
2


. This is a (two-point) boundary value problem and also has a unique 

solution.  

7.3 Sturm-Liouville Equation 

 In mathematics and its applications, a classical Sturm –Liouville equation, named after Jacques 

Charles Francois Sturm (1803-1855) and Joseph Liouville (1809-1882), is a real second-order linear 

differential equation of the form  

   ( ) ( ) ( ) 0
d dy

p x q x r x y
dx dx


 

   
 

  (1) 

where y is a function of the free variable x. Here the functions p(x) > 0 has a continuous derivative, q(x) 

and r(x) > 0 are specified at the outset, and in the simplest of cases are continuous on the finite closed 

interval [a, b]. In addition, the function y is typically required to satisfy some boundary conditions at a 

and b. The function r(x), is called the “weight” or “density” function.  

 The value of  is not specified in the equation; finding the values of  for which there exists a 

non-trivial solution of (1) satisfying the boundary conditions is part of the problem called the Sturm-

Liouville problem (S L).  

 Such value of  when they exist are called the eigenvalues of the boundary value problem 

defined by (1) and the prescribed set of boundary conditions. The corresponding solutions (for such ) 

are the eigenfunctions of this problem.  

7.4 Sturm-Liouville Boundary Value Problems (SLBVP) 

 We shall consider a special kind of boundary value problem known as Sturm-Liouville problem.  

Definition 7.4.1 We consider a boundary value problem which consists of  

1. A second order homogeneous linear differential equation of the form  
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  ( ) [ ( ) ( )] 0
d dy

p x q x r x y
dx dx


 

   
 

 (1) 

where p, q and r are real functions such that p has a continuous derivative, q and r are continuous, and 

p(x) > 0 and r(x) > 0 for all x on a real interval a ≤ x ≤ b and  is a parameter independent of x; and  

2. Two supplementary conditions  

    A1y(a) + A2y'(a) = 0, 

      B1y(b) + B2y'(b) = 0,  (2) 

where A1, A2, B1 and B2 are real constants such that A1 and A2 are not both zero and B1 and B2 are not 

both zero.  

 This type of boundary-value problem is called a Sturm-Liouville problem (or Sturm-Liouville 

system). 

Note Two important special cases are those in which the supplementary conditions (2) are either of the 

form  

    y(a) = 0,  y(b) = 0  (3) 

or of the form  

    y'(a) = 0,  y'(b) = 0  (4) 

Example 7.4.2 The boundary-value problem  

    
2

2
  λ 0

d y
y

dx
    (1) 

    y(0) = 0, y() = 0  (2) 

is a Sturm-Liouville problem. The differential equation (1) may be written  1. 0 .1 0
d dy

y
dx dx


 

   
 

 

 where p(x) = 1, q(x) = 0, and r(x) = 1. The supplementary conditions (2) are of the special form. 



Ordinary Differential Equations-I  MAL-514 

DDE, GJUS&T, Hisar  176 |  

 

 Let us see what is involved in solving Sturm-Liouville problem. We must find a function f which 

satisfies the given differential equation and the two supplementary conditions. Clearly one solution of 

any problem of this type is the trivial solution  such that (x) = 0 for all values of x. But, this trivial 

solution is not very useful. We shall search for nontrivial solutions of the problem. That is, we shall 

attempt to find functions, not identically zero, which satisfy the given differential equation and the two 

conditions. We shall see that the existence of such nontrivial solutions depends upon the value of the 

parameter  in the differential equation.  

Example 7.4.3 Find nontrivial solutions of the Sturm-Liouville problem   

    
2

2
  λ 0

d y
y

dx
    (1) 

    y(0) = 0, y() = 0  (2) 

Solution Consider separately the three cases  = 0,  < 0 and  > 0. In each case we shall first find the 

general solution of the differential equation. We shall then attempt to determine the two arbitrary 

constants in this solution so that the supplementary conditions (2) are also satisfied.  

Case 1   = 0. In this case the differential equation (1) reduces to  

    , 

so the general solution is  

    y = c1 + c2 x.   (3) 

 We now apply the conditions (2) to the solution (3). We find that in order for the solution (3) to 

satisfy the conditions (2), we must have c1 = c2 = 0. But then the solution (3) becomes the solution y such 

that y(x) = 0 for all values of x. Thus if the parameter  = 0, the only solution of the given problem is the 

trivial solution.  

Case 2   < 0. The auxiliary equation of the differential equation (1) is m
2
 +  = 0 and has the roots 

 λ  . Since in this case  < 0, these roots are real and unequal. Denoting λ  by , we see that for  

< 0 the general solution of (1) is of the form  

2

2
 0

d y

dx

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    y = c1e
x

 + c2e
-x

 .  (4)  

 We now apply the conditions (2) to the solution (4). Applying the first condition y(0) = 0, we 

obtain  

          c1 + c2  = 0   (5) 

Applying the second condition y() = 0, we find that  

    c1e


 + c2e
-

  =  0  (6) 

Thus for the solution (4) to satisfy the conditions (2), the constants c1 and c2 must satisfy the system of 

equations (5) and (6). Obviously c1 = c2 = 0 is the solution of this system; but these values of c1 and c2 

would only give the trivial solution of the given problem. We must therefore seek nonzero values of c1 

and c2 which satisfy (5) and (6). This system has nonzero solutions only if the determinant of coefficients 

is zero. Therefore, we must have     

     

which gives e
 = 

e
- 

and hence that  = 0. Since  =  , we must then have  = 0. But  < 0 in this 

case. Thus there are no non-trivial solutions of the given problem in the case  < 0. 

Case 3   > 0.  Since  > 0 here, the roots    of the auxiliary equation of (1) are the conjugate 

complex numbers   . Thus in this case the general solution of (1) is of the form  

    y = c1 sin
2   cos .x c x    (7) 

We now apply the condition (2) to this general solution. Applying the first condition y(0) = 0, we obtain  

    c1sin 0 + c2 cos 0 = 0 

and hence c2 = 0. Applying the second condition y() = 0, we find that  

    c1 sin 
2  cos  0.c      

Since c2 = 0, this reduces to 

     c1 sin  0.     (8) 

1           1
0

    e e 

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We can set c1 = 0 or we can set sin  0.    However, if we set c1 = 0, then (since c2 = 0 also) the 

solution (7) reduces immediately to the unwanted trivial solution. Thus to obtain a nontrivial solution we 

can not set c1 = 0 but rather we must set  

    sin  0.      (9) 

If k > 0, then sin k = 0 only if k is a positive integer n = 1, 2, 3…. Thus in order to satisfy (9) we must 

have n  , where n = 1, 2, 3, ….. Therefore, in order that the differential equation (9) has a nontrivial 

solution of the form (7) satisfying the conditions (2), we must have   

     = n
2
 ,      where n = 1, 2, 3, …..  (10)  

The parameter  in (2) must be a member of the infinite sequence  

    1, 4, 9, 16, ……, n
2
,......... 

Conclusion If  ≤ 0, the Sturm-Liouville problem consisting of (1) and (2) does not have a nontrivial 

solution; if  > 0, a nontrivial solution can exist only if  is one of the values given by (10). We now 

note that if  is one of the values given by (10) , then the problem does have nontrivial solutions. From 

(7) we see that nontrivial solutions corresponding to  = n
2
  (n = 1, 2, 3, …. ) are given by  

    y = cn sin nx  (n = 1, 2, 3, ….) (11) 

where cn (n = 1, 2, 3, …. ) are arbitrary nonzero constants. That is, the functions defined by c1 sin x, c2 

sin 2x, c3 sin 3x,….., where c1, c2, c3,…... are arbitrary nonzero constants, are nontrivial solutions of the 

given problem.  

7.5 Characteristic Values and Characteristic Functions 

 Example 7.4.3 shows that the existence of nontrivial solutions of a Sturm-Liouville problem 

depends upon the value of the parameter   in the differential equation of the problem. Those values of 

the parameter for which nontrivial solutions do exist, as well as the corresponding nontrivial solutions 

themselves, are singled out by the following definition:  

Definition 7.5.1 Consider the Sturm-Liouville problem 7.4.1, consisting of the differential equation (1) 

and the supplementary conditions (2). The values of the parameter  for which there exist nontrivial 
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solutions of the problem are called the characteristic values of the problem. The corresponding nontrivial 

solutions themselves are called the characteristic functions of the problem.  

 The characteristic values are also called eigenvalues; and the characteristic functions are also 

called eigenfunctions.  

Example 7.5.2 Consider again the Sturm-Liouville problem 

    
2

2
 + λy 0,

d y

dx
    (1) 

   y(0) = 0, y() = 0  (2) 

In example (4) we found that the values of  in (1) for which there exist nontrivial solutions of this 

problem are the values  

    = n
2
,  where n = 1, 2, 3……  (3) 

 These are the characteristic values of the problem under consideration. The characteristic 

functions of the problem are the corresponding nontrivial solutions 

   y = cn sin nx  (n = 1, 2, 3…),  (4) 

where cn (n = 1, 2, 3…) are arbitrary nonzero constants.  

Example 7.5.3 Find the characteristic values and characteristic functions of the Sturm-Liouville problem  

    
λ

 + y 0,
d dy

x
dx dx x

 
 

 
   (1) 

   y'(1) = 0, y'(e
2

) = 0  (2) 

where we assume that the parameter  in (1) is non-negative.  

Solution We consider separately the cases  = 0 and  > 0. If  = 0, the differential equation (1) reduces 

to  

      0.
d dy

x
dx dx

 
 

 
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The general solution of this differential equation is  

   y = C ln |x| + C0, 

where C and C0 are arbitrary constants. If we apply the conditions (2) to this general solution, we find 

that both of them require that C = 0. Thus for  = 0 we obtain the solutions y = C0, where C0 is an 

arbitrary constant. These are nontrivial solutions for all choices of C0  0. Thus  = 0 is a characteristic 

value and the corresponding characteristic functions are given by y = C0, where C0 is an arbitrary 

nonzero constant. 

 If  > 0, we see that for x  0 this equation is equivalent to the Cauchy-Euler equation  

   
2

2

2
 +  + λy 0.

d y dy
x x

dx dx
   (3) 

Letting x = e
t
, Equation (3) transforms into  

   
2

2
 + λy 0.

d y

dt
     (4) 

Since  > 0, the general solution of (4) is of the form  

   
1 2y = c  sin λ  t+ c  cos λt.  

Thus for  > 0 and x > 0, the general solution of (1) may be written 

    
1 2y = c  sin ( λ  ln x) + c  cos ( λ  ln x).  (5) 

We now apply the supplementary conditions (2). From (5) we find that  

    1 2c λ c λdy
 =  cos ( λ  ln x)   sin ( λ  ln x) 

dx x x
  (6) 

for x > 0. Applying the first condition y'(1) = 0  of (2) to (6), we have  

   
1 2c  λ  cos ( λ  ln 1)  c  λ  sin ( λ  ln 1) = 0  

or 
1c  λ   = 0.  Thus we must have  
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     c1 = 0    (7) 

Applying the second condition y' (e
2

) = 0 of (2) to (6) we obtain  

   -2 2 -2 2

1 2c λe  cos ( λ  ln e ) - c  λe  sin ( λ  ln e ) = 0    . 

Since c1 = 0 by (7) and ln e
2 

= 2, this reduces to  

   -2

2c λe  sin (2 λ  ) = 0   

Since c1 = 0, the choice c2 = 0 would lead to the trivial solution.  

 We must have  sin 2 λ = 0 and hence 2 λ  = n   , where n = 1, 2, 3. Thus in order to satisfy 

the second condition (2) nontrivially we must have  

    
2

( 1,2,3......)
4

n
n     (8) 

Corresponding to these values of  we obtain for x > 0, the nontrivial solutions  

    
ln

cos ( 1,2,3......),
2

n

n x
y c n

 
  

 
 (9) 

where the cn(n = 1, 2, 3….) are arbitrary nonzero constants. 

 Thus the values  

    
21 9 25

0, ,  1, ,  4, ,......., ,....,
4 4 4 4

n
   

given by (8) for n  0, are the characteristic values of the given problem. The functions.  

    0 1 2 3

ln 3ln  
, cos , cos(  ), cos ,......,

2 2

x x
c c c ln x c

   
   
   

 

given by (9) for n  0, where c0, c1, c2, c3… are arbitrary nonzero constants, are the corresponding 

characteristic functions.  
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We observe that in each of these problems the infinite set of characteristic values can be arranged in a 

monotonic increasing sequence  

     1 < 2 < 3 <…… 

such that n   + as n  + . For example, the characteristic values of the problem of Example 4 can 

be arranged in the monotonic increasing sequence  

    1 < 4 < 9 < 16 < ….  (10) 

such that  n =  n
2

   +  as n  + . We also note that in each problem there is a one-parameter family 

of characteristic functions corresponding to each characteristic value, and any two characteristic 

functions corresponding to the same characteristic value are merely nonzero constant multiples of each 

other. For example, in the problem of Example 4, the one-parameter family of characteristic functions 

corresponding to the characteristic value n
2
 is cn sin nx, where cn  0  is the parameter.  

Theorem 7.5.4 Prove that eigenvalues of  a SLBVP are discrete.  

Proof   Let y1(x, ) and y2 (x, ) be two linearly independent solutions (for fixed ) of a SLBV 

problem consisting of a differential equation.  

           ( ) [ ( ) ( )] 0
d dy

p x q x r x y
dx dx


 

   
 

  (1) 

and the boundary conditions  y(a) = y(b) = 0.   (2)  

Then any solution of (1)  can be expressed as linear combination of y1 and y2. That is  

   y(x, )  = A y1 (x, ) + B y2 (x, ).   (3) 

The constants A and B are determined by the fact that y(x, ) in (3) also satisfies the boundary 

conditions (2), which leads to  

   A  y1 (a, )  +  B  y2 (a, ) = 0  (4) 

   A  y1 (b, )  +  B  y2 (b, ) = 0   
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or in the form of matrix equation 

   
1 2

1 2

( , ) ( , ) 0
               

( , ) ( , ) 0

y a y a A

y b y b B

 

 

     
     

    
 (5) 

Now, condition for the existence of non-trivial solution of (4) is that the determinant of the matrix of 

coefficients in (5) vanishes. Otherwise, the only solution is A = B =0, which yields the trivial solution 

y(x) = 0. Thus  

   
1 2

1 2 1 2

1 2

( , ) ( , )
          =  ( , )  ( , )  ( , )  ( , ) 0

( , ) ( , )

y a y a
y a y b y b y a

y b y b

 
   

 
  . (6) 

Now,  y1 (x, ) and y2 (x, ) being analytic functions of , the determinant itself is an analytic function of 

. Therefore, by the theory of complex-valued functions, the zeros of the determinant must be isolated. 

[The zeros of an analytic function are isolated]. Since the zeros of the determinant correspond to 

solutions of the SLBVP, we thus conclude that the eigenvalues of (1) and (2) are discrete. 

This completes the proof.  

7.6 Orthogonality of functions 

Definition 7.6.1 Two functions f and g are called orthogonal with respect to the weight function  on the 

interval a ≤ x ≤ b if and only if  

     ( ) ( ) ( ) 0.
b

a
f x g x x dx   

Example 7.6.2 The functions sin x and sin 2x are orthogonal with respect to the weight function having 

the constant value 1 on the interval 0 ≤ x ≤ , for  

     
0

(sin )(sin 2 )(1)  0x x dx



  

Definition 7.6.3 Let {n} n = 1, 2, 3, …. be an infinite set of functions defined on the interval a ≤ x ≤ b. 

The set {n} is called an orthogonal system with respect to the weight function  on a ≤ x ≤ b, if every 
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two distinct functions of the set are orthogonal with respect to  on a ≤ x ≤ b. That is, the set {n} is 

orthogonal with respect to  on a ≤ x ≤ b if  

      
m n( ) ( ) ( ) 0               .

b

a
x x x dx for m n      

Example7.6.4 Consider the infinite set of functions {n}, where n(x) = sin nx (n = 1, 2, 3, …..) on the 

interval 0 ≤ x ≤ . The set {n} is an orthogonal system with respect to the weight function having the 

constant value 1 on the interval 0≤ x ≤ , for  

  
0

sin( ) sin( )
(sin )(sin )(1) 0

02( ) 2( )

m n x m n x
mx nx dx

m n m n

  
  

           for m n. 

Note The weight function (x) is not always equal to 1.  

7.7 Orthogonality of Characteristic Functions  

 We now state and prove a basic theorem concerning the orthogonality of characteristic functions 

of a Sturm-Liouville problem, also know as Sturm-Liouville Theorem.  

Theorem 7.7.1 Sturm - Liouville Theorem 

Hypothesis Consider the Sturm-Liouville problem consisting of  

1.  The differential equation  

    ( )  [ ( ) ( )]  0,
d dy

p x q x r x y
dx dx


 

   
 

 (1) 

where p, q and r are real functions such that p has a continuous derivative, q and r are continuous, and 

p(x) > 0 and r(x) > 0 for all x on a real interval a ≤ x ≤ b; and  is a parameter independent of x ; and  

2.  The conditions  

    A1 y(a)  + A2y'(a)  = 0 

    B1 y(b)  + B2y'(b)  =  0,  (2)  
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where A1, A2, B1 and B2 are real constants such that A1 and A2 are not both zero and B1 and B2 are not 

both zero. 

 Let m and n be any two distinct characteristic values of this problem. Let m be a characteristic 

function corresponding to m and let n be a characteristic function corresponding to n. 

Conclusion The characteristic functions m and n are orthogonal with respect to the weight function 

 on the interval a ≤ x ≤ b.    

Proof   Since m is a characteristic function corresponding to m, the function m satisfies the 

differential equation (1) with = m; and since n is a characteristic function corresponding to n, the 

function n  satisfies the differential equation (1) with  = n. Thus, we have  

    m[ ( ) ( )] [ ( ) ( )] ( ) 0,m m

d
p x x q x r x x

dx
       (3) 

        n[ ( ) ( )] [ ( ) ( )] ( ) 0,n n

d
p x x q x r x x

dx
       (4) 

for all x such that a ≤ x ≤ b. Multiplying both sides of (3) by n(x) and both sides of (4) by m(x) and 

then subtracting the results we obtain 

  m n( ) [ ( ) ( )] ( ) ( ) ( ) ( ) [ ( ) ( )]n m m n m

d d
x p x x x x r x x p x x

dx dx
          

      ( ) ( ) ( ) 0n m nx x r x     

and hence  

  (m - n) m(x)n(x)r(x) = m(x) n[ ( ) ( )]
d

p x x
dx

  n(x) m[ ( ) ( )].
d

p x x
dx

   

We now integrate the above identity from a to b and obtain  

  (m - n)      m n m nx x r x ( ) [ ( ) ( )]
b b

a a

d
dx x p x x dx

dx
       

      n x [ ( ) ( )] 
b

m
a

d
p x x dx

dx
   (5) 
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Integrating by parts, the right member of (5) becomes  

         m n n m nx p x x ( ) ( ) x ( ) ( ) ( )
b

n
a

b b
p x x dx x p x x

a a
             

      
m n( ) ( ) ( )

b

a
p x x x dx    

or 

          n m( ) ( ) ( ) ( ) .
b

m n
a

p x x x x x        

Therefore the identity (5) becomes  

 (m - n)          m n m n n mx x r x ( )[ b ( ) b ( )]
b

a
dx p b b b         

         -    m n n m( )[ a ( ) a ( )].p a a a      (6) 

 Since m and n are characteristic functions of the problem, they satisfy the supplementary 

conditions (2) of the problem. If A2 = B2 = 0 in (2), these conditions reduce to y(a) = 0, y(b) = 0. Then in 

this case m(a) = 0, m(b) = 0, n(a) = 0, and  n(b) = 0, and so the right member of (6) is equal to zero.  

 If A2 = 0 but B2  0 in (2), these conditions reduce to y(a) = 0,                             y(b) + y '(b) = 

0, where  = B1/B2. Then the second bracket in the right member of (6) is again equal to zero. Also, the 

first bracket in this member may be written as  

          n n m m m n[β b  + ( )] b   [β b  + ( )] b ,b b         

and so it is also equal to zero. Thus in this case the right member of (6) is equal to zero.  

 Similarly, if either A2  0, B2 = 0 or A2  0, B2  0 in (2), then the right member of (6) is equal to 

zero (prove it). Thus in all cases the right member of (6) is equal to zero and so  

        m n m n(λ   λ ) x x r x  dx = 0.
b

a
    

 Since m and n are distinct characteristic values, so m - n  0. Therefore we must have  
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        m nx x r x  dx = 0.
b

a
    

 This proves that eigen functions m and n are orthogonal with respect to r on a ≤ x ≤ b. 

Remark Let {n} be the infinite set of characteristic values of a Sturm Liouville problem, arranged in 

a monotonic increasing sequence 1 < 2 < 3 < ….. For each n = 1, 2, 3……, let n be one of the 

characteristic functions corresponding to the characteristic value n. Then above Theorem implies at 

once that the infinite set of characteristic functions 1, 2, 3, ….. is an orthogonal system with respect to 

the weight function r on a ≤ x ≤ b. 

Example 7.7.2 Consider again the Sturm-Liouville problem 

    
2

2
 + λy 0,

d y

dx
    (1) 

   y(0) = 0, y() = 0  (2) 

which we have already investigated. Corresponding to each characteristic value        n = n
2
 (n = 1, 2, 

3……), we found the characteristic functions cn sin nx (n = 1, 2, 3……) where cn(n = 1, 2, 3……) are 

arbitrary nonzero constants. Let {n} denotes the infinite set of characteristic functions for which cn = 1 

(n = 1, 2, 3……). That is  

   n(x) = sin nx   (0 ≤ x ≤ ; n = 1, 2, 3….). 

Then by the above Theorem, the infinite set {n} is an orthogonal system with respect to the weight 

function r, where r(x) = 1 for all x, on the interval  0 ≤ x ≤ . That is 

   
0

(sin mx)(sin nx)(1) dx = 0


   (3) 

for m = 1, 2, 3, ……; n = 1, 2, 3, ……; m  n.  

Theorem 7.7.3  Prove that the eigen values of a SLBVP are real . 

Proof Let n be an eigen value corresponding to the eigen function n(x) of the given SLBVP. Then, by 

definition  
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     n
n

dd
 p(x)   q(x) + λ r(x) ( ) 0

dx dx
n x




 
  

 
 (1) 

and   A1 n (a) + A2 'n (a) = 0   

   B1 n (b) + B2 'n (b) = 0  (2) 

 We know that p(x), q(x) and r(x) are real valued functions of x over the interval [a, b]. So, taking 

the complex conjugate of (1) and (2), we obtain  

     n
n

dd
 p(x)   q(x) + λ r(x) ( ) 0

dx dx
n x




 
     

 
 (3) 

and      1 n 2 n A  a   A  a   0    

      1 n 2 n B  b   B  b   0   ,  (4) 

where A1, B1, A2, B2 are real constants.  

 Thus, n   is also an eigen function, corresponding to an eigen value nλ of the same SLBVP. So 

from Sturm Liouville Theorem, it follows that  

        n n n n(λ   λ ) r x  x x  dx = 0
b

a
     

  or     2

n n n(λ   λ ) r x  | x |  dx = 0.
b

a
    (5) 

Since, r(x) > 0 and |n(x)|  0, being a nontrivial solution, so we must have 

   n n(λ   λ )  0   

  or n nλ   λ  

This shows that eigen values are real.  

7.8 Orthonormal Systems  
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Definition 7.8.1 A function f is called normalized with respect to the weight function  on the interval a 

 x  b if and only if  

       
2

 dx = 1.
b

a
f x x    

Example 7.8.2 The function  x  = 2/  sin xf  is normalized with respect to the weight function 

having the constant value 1 on the interval 0  x  , for  

    

2

2

0 0

2 2 2 π
 sin x 1  dx =  sin  x dx   .  = 1.

π π 2

 



 
  

 
   

Definition 7.8.3 Let {n} (n = 1, 2, 3, ......) be an infinite set of functions defined on the interval a  x  

b. The set {n} is called an orthonormal system with respect to the weight function  on a  x  b if  

(1) It is an orthogonal system with respect to  on a  x  b.  

(2) Every function of  the system is normalized with respect to  on a  x  b. That is, the set {n} is 

orthonormal with respect to  on a  x  b if 

        m n

0 for m  n,
x x x dx = 

1 for m = n.

b

a
  





   

Example 7.8.4 Consider the infinite set of functions {n}, where n(x) = 2/  sin nx (n = 1, 2, 3, ......) 

on the interval 0  x  . The set {n} is an orthogonal system with respect to the weight function having 

the constant value 1 on the interval 0  x  , for  

   
0

2 2
 sin mx  sin nx  (1) dx = 0



 

  
    
  

    for m  n. 

Further, every function of the system is normalized with respect to this weight function on 0  x  , for   

    

2

0

2
 sin nx  (1) dx = 1.





 
  
 

     
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Thus the set {n} is an orthonormal system with respect to the weight function having the constant value 

1 on 0  x  . 

Remark 7.8.5 Consider the Sturm-Liouville problem. Let  {n} be the infinite set of characteristic values 

of this problem, such that 1 < 2 < 3 < ....... If  n (n = 1, 2, 3, ......) is one of the characteristic functions 

corresponding to the characteristic value n, then we know from S-L Theorem that the infinite set of 

characteristic functions 1, 2, 3, ....... is an orthogonal system with respect to the weight function r on               

a  x  b. But this set of characteristic functions is not necessarily orthonormal with respect to r on a  

x  b. 

Now, if n is one of the characteristic functions corresponding to n, then knn, where kn is 

an arbitrary nonzero constant, is also a characteristic function corresponding to n.  Thus from 

the given set of characteristic functions 1, 2, 3, ....... we can form a set of "new" characteristic 

functions k11, k22, k33, ....... and this "new" set is also orthogonal with respect to r on a  x  b. 

Now if we can choose the constants k1, k2, k3, ........ in such a way that every characteristic function of 

the "new" set is also normalized with respect to r on a  x  b, then the "new" set of characteristic 

functions k11, k22, k33, ....... will be an orthonormal system with respect to r on a  x  b. 

The constants k1, k2, k3, ........ can indeed be chosen so that the set k11, k22, k33, ....... is 

orthonormal. As the function r in the given differential equation is such that r(x) > 0 for all x on 

the interval a  x  b. Also by definition no characteristic function n (n = 1, 2. 3,...) is identically zero 

on a  x  b. Therefore 

          
2

n(x)  r(x) dx = K  > 0 (n = 1, 2, 3, ....), 
b

n
a
  

so  

2

n

1
 (x)  r(x) dx = 1 (n = 1, 2, 3, ....). 

K

b

n
a


 
 
  

  

Thus the set    
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1 2 3

1 2 3

1 1 1
 ,   ,    ,.......

K K K
    

is an orthonormal set with respect to r on  a  x  b. Thus, from a given set of orthogonal characteristic 

functions 1, 2, 3, ......., we can always form the set of orthonormal characteristic functions k11, 

k22, k33, ....... where  

   kn = 
n

1

K
 = 

 
2

1

(x)  r(x) dx 
b

n
a


  (n = 1, 2, 3......) 

Example 7.8.6 The Sturm-Liouville problem of example 7.7.2 has the set of orthogonal characteristic 

functions {n}, where n(x) = cn sin nx (n = 1, 2, 3,...... ; 0  x  )
 
and cn (n = 1, 2, 3....) are nonzero 

constants. We now form the sequence of orthonormal characteristic functions {knn}, where kn is 

defined as above. We have 

    Kn =  
2

2 n
n

0

c π
c  sin nx  (1) dx = ,

2



     

     kn = 
n

1

K
  = 

n

1 2

c π
, 

  knn(x) =  n

n

1 2 2
 c  sin nx  =   sin nx      (n = 1, 2, 3.....)

c π π

 
  
 

 

 Thus the Sturm-Liouville problem under consideration has the set of orthonormal 

characteristic functions {n}, where n(x) = 2/  sin nx (n = 1, 2, 3, ......; 0  x  ). We see that this 

is the set of orthonormal functions considered in Example 7.8.2.   

7.9    Check Your  Progress 

 
Q.1 Verify the validity of the conclusion of Sturm - Liouville Theorem for the characteristic functions 

of the following Sturn Liouville problems.  
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(a)  
2

2
 + λy 0,

d y

dx
  y(0) = 0, y(/2) = 0.   

(b) 
λ

 + y 0,
d dy

x
dx dx x

 
 

 
     y'(1) = 0,  y'(e

2
) = 0. 

Q.2 Define orthonormal system of functions. 

Q.3 Explain orthogonality of characteristiv functions. 

Q.4 Find the characteristic values and characteristic functions of  the following Sturm-Liouville 

problem 

 
2

2
 + λy 0,

d y

dx
          y(0) = 0,        0.

2
y

 
 

 
  

7.10 Summary 

In the course of this chapter, Sturm-Liouville problems are studied and non-trivial solutions of 

such problems are found. Characteristic values of a SLBVP are found to be real and discrete. A basic 

theorem known as Sturm-Liouville theorem concerning the orthogonality of characteristic functions is 

proved and its validity is verified for the characteristic functions of a SLBVP.  

7.11 Keywords 

 Boundary value problems, Characteristic values, Characteristic functions, Orthogonality, 

Orthonormality.          

7.12   Self-Assessment Test  

 
Find the characteristic values and characteristic functions of each of the following Sturm-Liouville 

problems. 

 1. 
2

2
 + λy 0,

d y

dx
          y(0) = 0,          0.y     
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2. 
2

2
 + λy 0,

d y

dx
         y(0) = 0,  y(L) = 0, where L > 0 

3. 
2

2
 + λy 0,

d y

dx
          y(0) = 0,  y() – y '() = 0 

4. 
λ

 + y 0,
d dy

x
dx dx x

 
 

 
      y(1) = 0,  y(e


) = 0. 

5. 
2

2

λ
( 1)  + y 0,

1

d dy
x

dx dx x

 
    

     y(0) = 0,  y(1) = 0. 

 [Hind: Let x = tan t.] 

 

 

7.13  Answers to check your progress  
 

Ans.4 
24 ( 1,2,3,....), sin 2 ( 1,2,3,....).nn n y c nx n      
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